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Preface 

This study involves the development of a method for solving s t r e s s  

problems in a continuum. 

commonly called a lattice analogy, i s  used in the solution. The impetus 

for  this study was the inability to solve rationally many stress problems 

occuring in  soil and rock mechanics. 

two fields can be classified a s  two-dimensional s t r e s s  problems, for ex- 

ample: long s t r ip  footing, retaining wall, culvert, and a well bore under 

fluid pressure  with or  without fluid leak off. These a r e  only a few of the 

typical problems which can be considered to be two-dimensional. 

method of solution developed herein i s  for two -dimensional problems. 

The extension of the lattice analogy technique to the general  three-dimensional 

s t r e s s  case  is discussed and recommendations made for this extension. 

A lattice representation of the continuum, more 

Several classical  problems in  these 

The 

Generally speaking, solutions to s t ress  problems in the field of soil 

and rock mechanics should consider the nonlinear behavior of the continuum, 

especially when the solutions a r e  concerned with both s t r e s s  distributions 

and distortions at higher s t r e s s  levels. The capability of considering non- 

linearity, and also nonhomogeneity, of the continuum is incorporated in the 

method of solution. 

solution. 

method of solution presented herein inapplicable. 

Infinitesimal strains a r e  considered in  the method of 

For  some problems i n  soils this consideration will make the 

For the past several  years soil- structure interaction problems have 

been studied at The University of Texas. 

and axially loaded piles, flexible footings, and flexible retaining walls. 

These problems include laterally 

iv  
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Methods for solving these problems have been developed whereby solutions 

may be obtained quite easily through the use of electronic digital compu- 

te rs .  

of the load-deformation characteristic used to define the soil. 

However, the accuracy of these solutions is  dependent of the accuracy 

The te rm,  

load-deformation characterist ic,  means the resis tant  

a soil as a structural element is deflected through it .  

behavior offered by 

Load-deformation 

characterist ic is not synomymic with s t ress-s t ra in  characterist ic.  Much 

research  i s  needed to develop procedures for predicting load-deformation 

characterist ic of a soil from i t s  stress- s t ra in  characterist ic.  

mental and analytical investigations will be involved. 

Both experi- 

The possibility of 

using the lattice analogy technique as a tool for predicting the load-deformation 

characterist ic of a soil from i t s  stress- s t ra in  characterist ic was primarily 

the reason fo r  this study. 

dressed to directly in this study, this study will provide an analytical tool 

Although load-deformation prediction was not ad- 

for future research activities in  prediction of load-deformation character-  

istic s. 



ABSTRACT 

The lattice analogy technique for solving plane s t r e s s  problems pre-  

sented by Hrennikoff in 1941 is extended to solve plane strain problems. S o -  

lutions to two-dimensional s t r e s s  problems in linear homogeneous mediums 

a r e  made feasible by the use  of matrix algebra and an electronic digital 

computer. 

Solutions of a plane s t r e s s  problem and a plane strain problem a r e  

pr e sented. 

Extension of the method of solution to nonhomogeneous linear mediums 

for the two-dimensional s t r e s s  case  i s  made. 

Extension of the method of solution to the general three-dimensional 

s t r e s s  case  i s  discussed. 

enumerated and recommendations made. 

The required developments for this extension a r e  

A method for solving two-dimensional s t r e s s  proHems in nonlinear 

mediums i s  presented. 

sentially, the procedure i s  to represent small blocks of the nonlinear medium 

by pseudo blocks of linear material. 

strain, the two blocks will possess the same state of s t ress .  

solution is to find the particular set  of pseudo linear blocks which will 

properly represent the behavior of the ac tua l  nonlinear medium under a 

given set  of boundary conditions. 

The method uses the lattice analogy technique. Es-  

When subjected to the same state of 

The key to the 

Solutions to two nonlinear s t ress  problems a r e  presented. 

At the conclusion of this study, the method for solution of nonlinear 

s t r e s s  problems is considered to be in  an embryonic stage of development. 

I tems for future study a r e  enumerated and recommendations made. 
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CHAPTER ONE 

INTRODUCTION 

Opening Remarks 

This study involves the development of a method for solving s t r e s s  

problems in  a continuum. 

commonly called a lattice analogy, i s  used i n  the solution. The impetus 

for this study was the inability to solve rationally many s t r e s s  problems 

occurring in soil and rock mechanics. 

these two fields can be classified a s  two-dimensional s t r e s s  problems, 

for example: long s t r ip  footing, retaining wall, culvert, and a well bore 

under fluid pressure with or without fluid leak off. These a r e  only a few 

of the typical problems which can be considered to be two-dimensional. 

The method of solution developed herein is  for two-dimensional problems. 

The extension of the lattice analogy technique to the general three-  

dimensional s t r e s s  case is  discussed and recommendations a r e  made for 

A lattice representation of the continuum, more  

Several classical  problems in 

this extension. 

Generally speaking, solutions to stress problems in the field of soil 

and rock mechanics should consider the nonlinear behavior of the continuum, 

especially when the solutions a r e  concerned with both s t r e s s  distributions 

and distortions at higher s t r e s s  levels. 

linearity, and also nonhomogeneity, of the continuum is incorporated in 

the method of solution. 

The capability of considering non- 

Because mathematical difficulties make solutions of the differential 

equations which govern s t r e s s  problems impossible in many cases ,  the 
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engineer i s  impelled to seek 

of pure mathematical analysis. 

a method of approach other than one 

This was recognized by A. Hrennikoff in 

1941. (7’ Hrennikoff proposed the lattice analogy technique to solve s t r e s s  

problems in linear elastic mediums. The technique proved applicable, with 

some qualifications, to a variety of problems including two-dimensional 

s t ress ,  bending of plates, bending of cylindrical shells, and the general 

case of three-dimensional s t ress .  However, as in other methods of solu- 

tion based on approximating a continuous mathematical function by discrete  

lumped values, the solution of the resulting system of linear simultaneous 

equations by hand computation, namely relaxation schemes, presented a 

formidable task.  Because of the inability to solve these large systems of 

equations, the application of the lattice analogy technique w a s  impractical 

for many s t ress  problems. 

With the advent of the electronic digital computer, a considerably bet- 

ter  means of computation became available. While this computational tool 

greatly increased the feasibility of numerical analysis procedures, there  

still  exist many problems which completely tax the capability of computers.  

Improvements in methods for solving large systems of equations as well 

as improvements in computational hardware a r e  currently being made. 

Since the ability to solve large systems of simultaneous equations will im- 

prove and since solutions of many problems a r e  feasible using currently 

available means, the lattice analogy method of solution was deemed to be 

a practical approach to s t r e s s  problems. The lattice analogy technique 

was broadened to consider the nonlinear behavior of a material. Several 

example problems a r e  solved. 

While the discussions and developments a r e  in  the context of soil and 
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rock mechanics, the method of solution is equally applicable to problems 

in other fields. 

As will be noted later in the development of the lattice analogy of a con- 

tinuum, the structural  configuration of an articulated framework used to 

represent a continuum i s  not arbitrary, although it i s  not unique. 

range of articulated frameworks could be developed to approximate the de- 

formability of a continuum. These frameworks would be composed of 

several  simple structural elements; namely, beams, columns, beam- 

columns, plates and blocks. 

plied to any articulated framework consisting of beam, column, and beam- 

column structural elements. Finite plate analogy or block analogy a r e  the 

descriptive t e rms  for frameworks composed of plate o r  block elements. 

A wide 

Lattice analogy i s  the descriptive te rm ap- 

Several analogies, both lattice and plate o r  block, have been proposed 

in the l i terature.  The analogy proposed by Hrennikoff i s  the classic lattice 

analogy . (7) The analogy by Clough is  an example of a finite plate analogy. (1) 

To date, no comprehensive evaluation of the relative mer i t s  of the several  

existing analogies has been reported. 

cient means for computations have only recently become available. 

recommended that an evaluation be made in  the near future. 

This is under standable since effi- 

It i s  

A lattice analogy approach was used in  this study. However, the method 

for  solving nonlinear s t r e s s  problems developed herein is not basically de- 

pendent on a particular analogy. 

indicates another analogy has  significant advantages over the particular 

analogy used herein, the employment of this analogy in  the method of solu- 

tion could be accomplished with little difficulty. 

If the evaluation study recommended above 



Objectives of th i s  Study 

The basic objective of this study is to develop a general method for 
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I solving two -dimensional s t r e s s  problems in  l inear and nonlinear mediums 

The latt ice analogy technique is chosen as the basic analytical tool since 

random and nonhomogeneous boundary conditions and material  descriptions 

I can be handled. The steps involved in  the development of this method of 

I solution are  listed below. 

1. Development of the basic lattice analogy. This step involves de- 
, 

veloping the basic lattice configuration to be used and then deriving the 

I system of equations which described the latt ice representation of the me- 

dium. Developing the procedures for representing both l inear and non- 

I l inear mediums i s  required in  this  step. 

2. Development of a means of solution based on-this lattice analogy. 

This step basically involves writing a computer program which i s  as gen- 

e ra l  as possible in  application. 

(i) developing a general input capability in  regard to boundary conditions, 

The writing of this  program involves 
I 

(ii) developing the means of generating the system of equations which de- 

scribes t h e  lattice representation of the problem, (iii) developing an effi- 

cient means for solving this system of equations, and (iv) developing the 

procedure for  computing states of s t ress  and s t ra in  throughout the medium 

based on the distortion of the loaded lattice. 

3 .  Evaluation of the potential of the method of solution. This step in- 

volves solving a wide variety of s t r e s s  problems to ascertain the general 

capability of the method of solution. 

4.  Recommendation for future work. This step involves making 



concrete recommendations, based on the initial study, for improving the 

capability of the method of solution. 
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CHAPTER TWO 

LATTICE ANALOGY OF A LINEAR MEDIUM 

The solution of problems in  elasticity generally involves the deter-  

mination of the unique states of s t r e s s  and of strain throughout a body which 

resul t  from a particular set of boundary conditions. The familiar equations 

which govern the solutions a r e  listed below for convenience. 

of symbols a r e  found in the l is t  of symbols. 

Identification 

The three equations of static equilibrium are:  

2.h + %  + z = 0 .  
a Y  

The six equations of compatibility a re :  

6 
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axay - - [ $ + a y  aZ aZ  A .  

The six equations of Hooke's law in matrix form are: 

I 

I 

, Yxz ' i 
! 1 

I Y y z . i  

The equilibrium equations and compatibility equations are applicable 

to any l inear o r  nonlinear continuous medium where only small  s t ra ins  are 

experienced. F o r  an isotropic medium the twenty-one elastic constants in  

Hooke's law will reduce to only two independent constants, namely a modu- 

l u s  of elasticity E and Poisson's r a t i o  v . The medium i s  considered to 

be isotropic in  the developments which follow. The resulting s t ress -s t ra in  

relations will be as follows. 

7 ? 

I 1 
O X  1 i  c1 c2 c2 0 0 0 I 8,  j 
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Where in t e rms  of the elastic constants E and v : 

(1-V)E 
( Lt v)( 1- 2 w)  c1 = 

v E  
(1+ V)( 1- 2 w) c2 = 

E 
2 ( l + V )  . c3 = 

F o r  convenience and clari ty in  presenting the lattice analogy of a con- 

tinuous medium, two-dimensional s t ress-  s t ra in  problems will be considered 

in detail and example solutions will be presented. 

s t ra in  problems are classified as either plane stress o r  plane strain. Two 

lattice analogies $or the plane s t r e s s  problem will be referenced and i l lus-  

trated in  the next section. 

be developed following the plane s t ress  analogy. 

to the general three-dimensional state of s t r e s s  will be discussed following 

the two -dim en sional treatment. 

Two-dimensional s t ress -  

A lattice analogy for the plane s t ra in  problem will 

An extension of the analogy 

Lattice Analogy for Plane Stress  Problems 

The physical analogy between the behavior of a continuous medium 

and an articulated framework has been studied and reported by several  r e -  

searchers ,  dating from 1906. K. Wiehardt, 1906, and W. Reidel, 1927, 

studied the subject of plane stress analogy by framework methods in a some- 

what restricted manner. (21a 15) A more comprehensive presentation of the 

lattice analogy for an isotropic linear medium was given by A. Hrennikoff, 

1941. ( 7 )  During essentially the same period, D. McHenry reported a simi- 

lar study to that of Hrennikoff. (12,W 
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Essentially, the lattice analogy method consists of representing a ~ 

continuous body by a lattice consisting of simple structural  elements which 

a r e  grouped together to form individual lattice cells. 

cell i s  such that it possesses  the same deformability characterist ics under 

any type of uniform s t r e s s  a s  that of a corresponding block of the continuous 

medium. When the dimensions of the lattice cell becomes infinitesimal, the I 

lat t ice representation of the continuous body becomes rigorously equivalent 

to the continuous body. 

line and the equivalent boundary conditions as that of the continuous body. 

S t ress  conditions on the body a r e  represented by static equivalent loads at 

node points of the individual lattice cells. 

sented by movements of node points. The resulting frame analysis problem 

(14) The solution involves find- is  solved by conventional stiffness methods. 

ing the resulting movement of each node point. 

The individual lattice 

j 

~ The lattice system is  given the same external out- 

I 

~ 

Distortion of the body is repre-  

I , 
l 

The state of s t ra in  at the 

center of each lattice cel l  i s  based on various s t ra in  components which a r e  

expressed in finite difference form using adjacent node movements. The 

state of s t r e s s  at the center of each lattice cel l  is then obtained from the 

known or  assumed relationship between states of s t ra in  and states of s t ress .  

In the developments to follow, the medium i s  assumed to be hyper- 

elastic. 

of s t ress .  

That is, for a given state of strain there i s  only one unique state 

The lattice analogy of a continuous medium will be illustrated by con- 

sidering the conditions of plane s t ress .  

used mainly for the sake of clari ty;  however, since this condition i s  often 

encountered in actual s t r e s s  problems, the plane-stress analogy is  a prac- 

The condition of plane s t r e s s  is 
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t ical  analytical tool. A problem wi l l  be solved at the end of this chapter to 

i l lustrate the plane s t r e s s  analogy. 

In the development of their lattice analogies, neither Hrennikoff nor 

McHenry stated fully the governing equations for plane s t ress .  The condi- 

- tions of plane s t r e s s  a r e  described by the condition (T, = T,, - T~~ = o 

and ox,  ( T ~ ,  T , ~  a r e  functions of x +nd y only. For a linear isotropic 

medium this s t r e s s  condition implies that e, , e y ,  e,, yxr a r e  inde- 

pendent of z and that yxz, yyz are zero. The governing equations, 

Eqs. 1, 2, and 4, will  reduce to the following for plane s t ress .  

The equations of static equilibrium for plane s t ress  a re :  

ao, + a7,, t Y = 0. 
a Y  ax 

The equations of compatibility for  plane s t r e s s  are:  

+ = "  
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The equations for  Hooks's law for plane s t r e s s  a re :  

(Jx = (+) (Ex + V C Y ]  

The equations involving the strain e, , Eqs. 6b, c, d, were not 

cited and were not used in the developments of the various lattice cel ls  pre- 

sented by Hrennikoff and McHenry. The apparent reason for this omission 

is that even though the solution of plane s t r e s s  problems obtained by neglect- 

ing these additional compatibility equations a r e  not exact, they a r e  neverthe- 

l e s s  very good approximations of plane s t r e s s  problems. (18) 

The structural  configuration of a lattice cell  used to represent a con- 

There tinuous block of material  i s  not arbitrary, although it is  not unique. 

have been several  lattice cel ls  proposed in  the l i terature,  but the majority 

of these cel ls  a r e  re.stricted to one value of Poisson's ratio. The two lat- 

tice cells which a r e  the most general in  the application of problems dealing 

with plane s t r e s s  in  a linear isotropic material  a r e  those suggested by 

Hrennikoff and McCormick. 

Hrennikoff in 1941. (7) Figure 2 presents the lattice cell proposed by 

McCormick in 1963. (lo) For  Poisson's ratio equal to 1/3 these two lattice 

Figure 1 presents the lattice cel l  suggested by 

cells become identical in structural configuration. 
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a t  
A =  

2 ( l + V )  

a t  
imG7) 

G 
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= TH ICKNESS OF PLATE 
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S- 
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FIGURE I HRENNIKOFF PLANE STRESS LATTICE CELL 
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at  
2( I + V I  

A =  

v a t  4T 
A, = 

I - v 2  

a3t ( I - 3 v )  I =  
2 4 ( 1 - v 2 )  

A , I  - 

L - - a  ------I 

I I 

I-I- -1-1-1 u 

- -7 r 

S 

S- 

P 

t 

t = THICKNESS OF 

PLATE 

I 

P = T(G)at 

I t 
P P 

FIGURE 2 McCORMlCK PLANE STRESS LATTICE CELL 
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Both Fig. 1 and Fig. 2 i l lustrate graphically the deformability equiva- 

lent between the lattice cel ls  and the corresponding blocks of the continuous 

body for  any arb i t ra ry  uniform s t r e s s  condition. 

continuous b ody employing either of these cel ls  will be equivalent to the 

continuous body for  any arbi t rary uniform s t r e s s  condition, regardless  of 

the mesh  size. 

of approximation of the lattice analogy wi l l  be dependent upon the mesh size. 

The structural  elements A, Al, & and I for both cel ls  a r e  ex- 

pressed in t e rms  of the Poisson's ratio v , the side dimension of the cell  

a , and the thickness of the cell  t . A, A l ,  A, a r e  cross-sectional 

a r e a s  of the structural  members.  I is the moment of inertia for the side 

members  in the McCormick cell. The modulus of elasticity E is the 

same for both the continuous body and the lattice. 

side elements A and I would be twice that given by the equations in  

Fig. 1 and Fig. 2. 

The lattice analogy of a 

If the stress condition is non-uniform in  nature, the degree 

The dimensions of the 

In a discussion of McCormick's paper of 1963, Hrennikoff criticized 

the efficiency of the lattice cell proposed by McCormick. ( 6 )  Hrennikoff' s 

crit icism was that in McCormick's cell three components of movement of 

each node point a r e  needed to describe the distortion of the lattice network, 

while in Hrennikoff's cell  only two components of movement at each main 

node point are needed since the cell i s  simply connected. 

indeterminancy of a given lattice system based on Hrennikoff's cel l  would 

be 50 per cent l e s s  than the same lattice system based on McCormick's 

cell. In even a crude lattice system this difference is of computational 

importance. 

The degree of 

In the initial stages of this study both McCormick's and Hrennikoff's 
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a general  lattice cell  valid for any Poisson's ratio is presented here  for 
I 

I the condition of plane strain. 

. 

I The conditions of plane strain are  such that the s t ra in  components 

cel ls  were used. 

made using both cells. 

Solutions to several  identical s t r e s s  problems were 

The solutions agreed with each other. Since the 

l T,, = Tyz  = o throughout the medium. The governing equations, Eqs. 

purpose of this study was to develop a method for solving s t ress  problems 

I 1, 2, and 4, simplify a s  shown for plane-strain conditions. ~ 

involving nonlinear mediums which automatically requires iterative proce- 

dures,  the matter of computational efficiency was of pr imary importance. 

F o r  this reason the Hrennikoff cell  was used i n  developing a procedure for 

solving nonlinear s t r e s s  problems. 

The method for the solution of linear problems employing Hrennikoff's 

simply-connected model will be outlined in detail following the section 

which presents the simply-connected lattice analogy for plane strain prob- 

lems. 

Lattice Analogy fo r  Plane Strain Problems 

The l i terature review of this study revealed that the lattice analogy 

technique has not been developed for plane-strain problems. Since this 

type of strain condition is  encountered quite often inclassical  as well a s  

practical s t r e s s  problems, the extension of the lattice analogy to encom- 

pass  plane- s t ra in  problems was deemed worthwhile. The development of 

Ez = Yxz = Yyz = o and E,, e,, yx, are functions of x and y 

only. 

o x  9 Dy, T,,, oz are functions of x and y only, and that 

Fo r  a linear isotropic material  this strain condition implies that 
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The equations of static equilibrium fo r  plane strain a re :  

The single equation of compatibility for plane strain is: 

a2 8 a 2 e  aaYxx 
+ = axay.  ( 9 )  

The equations of Hooke's l a w  written in the form of strain a s  a func- 

tion of s t r e s s  for plane strain are:  

E, = [+I [ ( l -u)ox  - UDY] 

= [ - I  [ ( l -u )oy  - vox] 

2( l+u)  
Y X Y  = [ T I  T X Y .  

The equivalent c r i te r ia  for a lattice cell i s  that it possesses  the same 

deformability under any uniform stress  condition a s  that of a similar size 

block of continuous medium. 

representation of a continuum is that it will deform identically with the con- 

tinuous body under every possible uniform s t r e s s  condition. This cri terion 

for plane s t ra in  may be stated conveniently in te rms  of the following three 

conditions, although other equivalent formulations are possible. These 

three conditions closely parallel the conditions formulated by Hrennikoff in  

Stated concisely the criterion of a lattice cell  
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deriving h i s  plane s t r e s s  analogy. 

ditions. 

1. 

F i g u r e  3 i s  used to i l lustrate these con- 

If the lattice in Fig.  3a  i s  loaded uniformly with normal loads 

P in  the P per node as shown in Fig.  3b i n  the x-direction and - 1-v 

y-direction, the resulting deformations of the lattice cel l  should be the 

same as that of the continuous body shown i n  Fig. 3ba that is A1 = A3.  

In other words the node deflections written in  t e r m s  of the cel l  charac-  

te r i s t ics  A, Al,  A, should be identical with that of the deformation 

of the continuous block. 

V 

This criterion is stated below in equation form. 

2. Reversing the loading condition above, two similar equations a r e  

produced. 

3. If the lattice cel l  is loaded uniformly at node points with a shear-  

ing load S as defined in  Fig.  3c, the resulting deformation of the lattice 

cell  should be the same as that of the continuous body, that i s  4 = A 4 .  

This cr i ter ion i s  shown below in equation form. 
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It should be noted that a proper combination of the three previous con- 
I 

ditions will produce any conceivable state of uniform s t r e s s  and consequently 

a lattice cell which obeys the previous conditions will  be a valid analog of 

the continuum under any uniform stress  conditions. 

Equation llc i s  not an independent equation, but follows from Eq. llb 

by Betti 's reciprocal theorem. Therefore, the number of independent 

equations involved in the three conditions is  four, and i t  follows that a cell 

which possesses  two axes of symmetry must in the general case possess  

four independent characterist ics.  

cal  in the two directions, the number of necessary conditions reduces to 

three and Eq. lld o r  Eq. lla becomes superfluous. If the cell i s  deficient 

Should the axes of symmetry be identi- 

in characterist ics by one, the condition of equivalent deformability is  satis- 

fied only for one particular value of Poisson's ratio, which would play the 

par t  of the missing characterist ic.  In order  to incorporate both the plane 

s t r e s s  a d  plane strain cel ls  into one computer program, the geometrical 

configuration of the cell  fo r  plane strain was chosen to be identical to 

that of the Hrennikoff's plane s t r e s s  cell. 

cal symmetry; therefore, only three characterist ics A, A,, 4 a r e  

necessary for the cell to be completely general in  regard to values of 

Poisson's ratio. The definitions of these characterist ics a r e  derived by 

writing expressions for the deformation of the lattice cel l  in t e r m s  of the 

cel l  characterist ics and equating these expressions to those for  the de- 

formation of the continuous block as  depicted by Eqs. ll and 12. 

tion of these expressions will yield the definition of the characterist ics.  

This cell  has two axes of identi- 

The solu- 

F r o m  Fig. 3b since there  i s  no extension in  the y-direction, the bar 

i s  equal to 0 and for equilibrium in the y-direction at a corner force F, 
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J2v node the force F, is  equal to - (1-v) Or 

F o r  equilibrium in the x-direction 

o r  

The elongation A 3  of the lattice cell in the x-direction i s  therefore 

Equating A 3  to A1 yields the expression of the cell  character is-  

tic A. 

a, (ltv)(l-2v)a 
(1-v)E 9 

at 'm. A =  

The elongation of the diagonal members A, for small  deformations 

. Figure 4 Jz with zero la teral  contraction in the y-direction is  As = 

is used to derive the expression of As 

A1 and A, and the force F, . Equating this expression for A s  to 

in t e rms  of the character is t ics  

A3 yields an equation for AI and A, . Jz 
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FIGURE 4 DERIVATION OF PLANE STRAIN LATTICE CELL 
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The cell  characterist ic A is defined by Eq. 12. Substituting this 

into the above equation yields a relationship between expression for  

A, and A, . 
A 

In Fig.  3c the lattice cel l  is deformed by the shearing load S 

applied at node points. 

shearing distortions the elements A, 

side elements A also a r e  not strained. F o r  static equilibrium at the 

node points F5 = F6=J2 S; Fs being tension and F e  being compres- 

sion. 

It should be noted that under the influence of the 

a r e  not strained and similarly the 

An expression for A, i s  therefore 

F&a 2F5 a J ~ T , ,  aa t A, = ( A,E ) J 2  = - = 
A1 E ALE . 

Equating 4 of the continuous medium to A, of the lattice cell 

yields the definition of Al . 

2(1+v)TXVa = A, = J27, aa t 
E AIE . h, = Y x y a  = 



1. . 
Substituting this expression for A1 

tion of the characterist ic A,. 
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into Eq. 13 yields the defini- 

at (4v-1) 
A, = 2(1+v)(l-3v) . 

The definition of the latt ice cel l  developed he re  for plane s t ra in  i s  

summarized in  Fig. 3 .  Reiterating, the geometrical configuration of the 

above plane- s t ra in  lattice cel l  is  identical with that of the plane- s t r e s s  

lattice ce l l  presented by Hrennikoff, but the s t ructural  configuration is 

different. It should be noted here  that only characterist ic A, i s  dif- 

ferent, that is, the center core  of each lattice cell.  Because of this geo- 

metrical  similarity, the same computer program may be used to solve 

s t r e s s  problems with the exception that in the generation of stiffness co- 

efficients the proper definitions of the characterist ic 

sidered. 

ploys both of these cel ls  is presented. 

of solution will be outlined in detail, and the r emarks  w i l l  be equally ap- 

plicable to either cell .  

A, must be con- 

In Appendix I the description of the computer program which em- 

In the following section the method 

Method of Solution by the Lattice Analogy 

The theory and procedure for solving s t r e s s  problems in  a l inear,  

isotropic medium under the conditions of plane stress o r  plane s t ra in  by 

employing a lattice analogy were reviewed briefly in  the preceeding sec- 

tions. 

solution by the lattice analogy technique. 

here  will be concerned with the lattice cell  shown in Figs.  1 and 3 .  

This section will detail the various steps involved in obtainirg a 

The method of solution outlined 

When 
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Hrennikoff proposed the lattice cell in Fig. 1, there  were no high speed 

computational facilities available to solve the resulting large system of 

simultaneous l inear equations; therefore, to obtain solutions for example 

problems Hrennikoff solved the lattice systems by the method of succes- 

sive joint displacements. This procedure resembled closely the method 

of moment distribution developed by Hardy Cross for f rame solutions and 

was ca r r i ed  out by lengthy hand computations. 

With the advent of the high-speed digital computer, a more  efficient 

means of solving large systems of linear simultaneous equations became 

available. Improved methods for computer solutions a r e  currently being 

developed and published in the literature. 

computer to solve the system of equations involved in the lattice analogy 

greatly increases  the usefulness and the practicality of this type of s t r e s s  

analysis. 

Hence, the u s e  of the digital 

The various steps involved in the solution of a s t r e s s  problem in a 

linear isotropic medium by the lattice analogy method a r e  listed here in  

sequence. 

of the computer program written f o r  t h i s  method of solution. 

This outline of operation i s  in  essence a general flow diagram 

1. The continuous body is represented by a lattice consisting of 

individual lattice cells and having the same geometrical boundaries as 

that of the body. 

2 .  Boundary conditions i n  te rms  of deflections o r  loads at main 

node points a r e  applied to the lattice t o  represent  the boundary conditions 

of the continuous body. 

3 .  The unique system of l inear simultaneous equations resulting 

from the lattice representation and the applied boundary conditions i s  
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generated. 

f rom the solution of this system of equations. 

The resulting movements of the main node points a r e  obtained 

4. From the obtained node movements, strain components a r e  com- 

These strain components a r e  used to puted by finite difference techniques. 

determine the states of strain at the center of each lattice cell. 

5. From the states of strain, the states of s t r e s s  a r e  obtained at 

the center of each lattice cell by the known relationships between states 

of s t ra in  and states of s t ress .  

Figure 5 presents in par t  the indexing used in representing a contin- 

uous body by a lattice analogy. 

continuous body is considered to be rectangular in shape. 

modifications to be discussed later,  irregularly shaped bodies can be con- 

sidered quite easily. As shown in  Fig. 5, each cell  i s  assigned two elas-  

tic constants E and v . The structural elements of each cell  A, 

A,,  a r e  based solely on the side and thickness dimensions of the 

cell and these two elastic constants. 

F o r  convenience in this presentation, the 

With simple 

4 

The movement of each main node is  described by the two t ransla-  

tions x ~ , - ~ ,  x2,, and similarly the external loads (that i s ,  loads 

simulating s t r e s s  conditions on the boundary o r  body forces i n  the interior 

of the body) on the main node points are described by two forces 

f,, . This type of ordering shown in  Fig. 5 will yield advantages in com- 

putational schemes. 

taneous equations are written in matrix form, the resulting "stiffness 

matrix'' will be a multiple-diagonal-band matrix, which is an advantage 

from a computational standpoint. Fo r  reference, the main node points 

a r e  ordered a s  indicated. 

f2,-,, 

The chief advantage i s  that when the linear simul- 
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As stated previously, conventional stiffness methods a r e  used to 

solve for node movements resulting from the applied boundary conditions. 

Figure 6 i s  used to derive the two equilibrium equations, Eqs. 16a and 

16b, which can be written at each m a i n  node point in t e rms  of stiffness co- 

efficients, node movements, and external loads. The indexing shown in 

pig. 6 is  consistent with that presented in Fig. 5. 

coefficients needed to write the two equilibrium equations a r e  listed in 

Fig. 6 .  These stiffness coefficients are derived in Appendix I. By equa- 

ting the sum of the individual forces resulting from the adjacent and cen- 

t r a l  node movements and the external loads f i  to zero, the two equations 

of equilibrium a r e  generated. 

i s :  

The various stiffness 

The equation for  forces  in the x-direction 

The equation for forces  in the y-direction is: 
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t f2n = 0. 2n+nw 2 t 2 ' (SNE)x2nt nw2t 1 ' ( 
The above notation for s t i f fness  coefficients, node movements, node 

loads, and the subscripting is  the same as that used in  the For t ran  pro- 

gram, LODY 2, Appendix 1. 

used in the text and in the For t ran  programs. 

convention but it i s  considered to be an improvement. 

Where ever possible the same notation wi l l  be 

This i s  a departure from 

F o r  the purpose of later discussion, it i s  noted here  that the equi- 

librium equations about an interior node point involves eighteen node 

movements. 

The stiffness matr ix  equation, Eq. 17, i s  generated by writing these 

two equilibrium equations about each ma in  node point: 

I - 1  

The boundary conditions involving s t r e s ses  or  body forces  a r e  repre-  

sented by the vector ( f )  . In order  to specify boundary conditions involv- 

ing distortions of the body, the corresponding node point movements are 

specified. To specify a node movement t h e  equilibrium equations for 

forces  i n  the direction of the particular node movement i s  deleted from the 

matr ix  equation. 

node to be the desired value. 

tion yields the resulting node movements throughout the lattice. 

for solving this matr ix  equation i s  a direct elimination process  which uses  

An equation is inserted that forces  the movement of the 

The solution of this modified matr ix  equa- 

The method 
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to fu l l  advantage the diagonally-banded characterist ic of the stiffness ma- 

trix. 

tions wi l l  be discussed and reviewed in  a la ter  chapter for the purpose of 

making recommendations for extending the method of solution to more  

complex two-dimensional s t r e s s  problems and to three-dimensional s t r e s s  

problems. 

Several possible means for solving diagonally-banded matrix equa- 

F r o m  the obtained node movements the state of s t ra in  at the center 

of each lattice cell  is calculated by use of finite difference representations 

of various strain components. Figure 7 i l lustrates this scheme. F rom 

the s t ra in  components e ,  , e Y i  * Y X Y l  principal s t ra ins  ell , 

computed along with an orientation angle 

direction of the maximum principal strain el to the x-direction. Counter- 

clockwise angles a r e  positive. 

a r e  

, which is  measured from 

€21 i 

Sign conventions a r e  given in F i g .  7. 

The state of s t r e s s  at each cell is computed from the known relation 

between s t ra in  and s t ress .  Stresses  that a r e  obtained at the center of each 

cell a r e  the principal s t r e s ses  oli and and the normal s t r e s ses  

and shearing s t resses  in the xy-direction oxi , oyl  , T~~~ . 
In the computer program written for this study, non-rectangular- 

shaped bodies may be handled by simply specifying that certain lattice cells 

which l ie  outside the boundary of the body possesses  a zero stiffness (E = 0).  

If this scheme becomes too inefficient, modification of the logic involved in 

the generation of the stiffness matrix may bq necessary i n  order  to repre-  

sent i r regular ly  shaped bodies. Since each cel l  can be assigned individual 

elastic constants, the method of solution will handle s t r e s s  problems in 

nonhomogeneous mediums by simply representing piecewise, to a scale of 

the cell  dimension, the nonhomogeneity of the medium. 
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A listing of the computer program BODY 2 based on the lattice cel ls  

shown in Figs. 1 and 3 is presented in Appendix I. 

McCormick's lattice cell i s  presented in Appendix II. 

tion two example problems will be solved. 

A program based on 

In the following sec- 

Illustrated Two-Dimensional S t ress  Problems of Plane S t r e s s  and Plane 

Strain 

This section will  i l lustrate the use of the lattice analogy by solving 

two problems, one of plane s t r e s s  and one of plane strain, in linear iso- 

tropic mediums. 

In addition to the problems illustrated here,  several other problems 

were solved. A vertically loaded sheet-pile wal l  was analyzed. The sheet- 

pile problem is a soil-structure interaction problem. For  this problem a 

lattice representing the soil medium was f i rs t  generated. This lattice was 

modified by the addition of the sheet-pile wall a s  an additional structural 

member.  This modified lattice was then solved. By similar means other 

two-dimensional soil- structure interaction problems could be analyzed. 

Several beams and short column problems were solved giving quite satis-  

factory results.  Problems covering the three cases  of uniform s t r e s s  con- 

ditions have been solved and the solutions agree with the theoretical solu- 

tions, thus confirming the validity of the lattice cel ls  and the computer 

program. 

The f i rs t  illustrative problem to be described i s  the cantilever beam 

shown in Fig. 8a. The left end of the beam i s  considered to be rigidly fixed 

and the right end i s  subjected to the loading shown. This is a problem of 

plane s t r e s s  and the lattice proposed by Hrennikoff i s  applicable. The 
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ordering shown in Fig. 8b of lattice cells, node movements, and node loads 

i s  in  accordance with the scheme presented in Fig. 5 .  

conditions which a r e  imposed on the lattice to simulate the boundary condi- 

tions of the continuous body a r e  listed in  Fig.  8b. 

the left end is  represented by specifying all node movements along this edge 

of the latt ice to be zero.  

sented by static equivalent loadings shown in Fig.  8b. 

The various boundary 

The fixed condition of 

The s t r e s s  conditions shown in Fig.  8 a  i s  repre-  

The solution of the problem is illustrated in par t  by Fig.  9 .  

torted lattice is shown. By magnifying the horizontal deflection scale the 

shear distortion of the vertical  face A-A, which i s  not considered in  con- 

ventional beam theory, i s  shown. 

latt ice cel l  a r e  computed from this distorted latt ice by use of finite differ- 

The dis-  

Strains and s t r e s ses  at the center of each 

ence representations of s t ra in  components. 

In order  to demonstrate a method for studying s t r e s s  concentrations, 

the lattice shown in Fig.  10a was employed. This latt ice i s  the right portion 

of the cantilever beam shown in F ig .  8b. 

is one-half the size of the cells used in the initial analysis i n  Fig.  8. 

reduction of the size of the lattice cell was made in  order  to reflect more 

The size of the cel ls  i n  Fig.  10b 

The 

properly the highly nonuniform s t r e s s  conditions occur4ng in the right end 

of the cantilever beam. 

Section C - C  obtained from the solution based on the lattice of Fig.  8 were 

used as boundary conditions for the problem in Fig.  10. The input and out- 

put data for  this solution a re  given in  Appendix 111. 

The node movements occurring along the vertical  

The resulting s t r e s s  distributions obtained from this finer lattice a r e  

presented in par t  i n  Fig.  10. As  can be seen, the s t r e s s  distributions a r e  

considerably different than those which would have been calculated from 
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conventional beam theory. 

F-F were  numerically integrated and the resulting forces  a r e  shown in 

The s t r e s s  distributions on the vertical  face 

37 

Figs.  10b and 10d. Static equilibrium checks show that acceptable accuracy 

was obtained. 

Compatability checks were made for the s t ra in  values at several  10- 

cations in  the right section of the beam and compatibility of s t ra in  values 

checked within 5 per cent. As an example, the compatibility check at cell  

No. 28 is  shown below. Strain values at the adjacent cel ls  are used to 

represent  the compatibility equation, Eq. 6a, in  finite difference form, 

and a r e  taken from the output data of t h e  problem in Appendix 111. It should 

be noted that the x y axes a r e  rotated 90 degrees  counterclockwise to 

form the x' y '  axes in  the finer mesh solution shown i n  Fig.  loa. The 

compatibility equation i s  written with respect to th i s  x' y' - reference 

system. 

1. 95117250 - (2) (  2.15110931) t 4.14514420 ) 5 

(0.5P 

= t o .  00003311. 
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3.22355827 t 4.94522040 - 3.  09887636 - 4.74811210) 10-4 

(4) (0. 5 P  

= + O .  00003218. 

As c a n b e  seen, the e r r o r  is small. 

The second example of two-dimensional s t r e s s  problems involving a 

Since l inear isotropic medium i s  the long strip footing shown in Fig.  lla. 

the footing i s  relatively long compared to its width, the problem may be 

considered to be one of plane strain.  It is desired to compute the initial 

p ressure  distribution beneath the uniformly distributed load. 

of solution is shown in  Fig. llb. 

the semi-infinite half space of the actual problem. 

the fixed boundaries a r e  200 feet away from the loaded area o r  twenty 

t imes the width of the footing. 

as boundary conditions for  the next finer lattice in  identically the same 

manner as the cantilever beam problem. 

par t  by Fig.  12. 

t ice analogy solution agrees  within the accuracy of the p re s su res  computed 

by conventional means, a solution of Boussinesq's equations in  char t  form 

for a l inear isotropic medium. (I8) The deflection of the ground surface 

and of the entire medium as well as the states of s t ra in  and stress through- 

out the medium are obtained from the lattice analogy solution. 

be readily appreciated that many other types of s t r ip  footing problems 

The technique 

Four solutions were made to approximate 

In the crudest  mesh, 

Deflections of the cruder lattice were used 

The resu l t s  a r e  i l lustrated in 

The vertical  pressure distribution obtained from the lat- 

It should 
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BOUNDARY CONDITIONS AND OTHER DATA 
(a 1 

BOUNDARY CONSIDERED FIXED VERTICALLY 

LATTICE REP RE SE NTAT ION 
( b )  

FIGURE I I  LONG STRIP FOOTING ON A STIFF CLAY 
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A 11.25 FT DEPTH 
x 21.25 FT DEPTH 
o 42.50 FT DEPTH 

SOLID CURVES FROM 
BOUSSINESQ SOLUTION 

DISTANCE OF FOOTING FROM CENTER L INE OF FOOTING ( F T )  

a )  VERTICAL PRESSURES ALONG VARIOUS HORIZONTAL PLANES 

VERTICAL PRESSURE ( L B /  IN2) 
I 2  3 4  5 6 7  8 0: I I I I I I A + X 4 

2 5 -  

150 - 
t 

175 - 
20 0" 

C 

- .  . L 
' f DISTANCE FROM G OF FOOTING 

A 1.25 FT  
X 6.25 FT 
o 16.25 FT 

SOLID CURVES FROM 
BOUSSINESQ SOLUTION 

b )  VERTICAL PRESSURES ALONG VARIOUS VERTICAL PLANES 

FIGURE 12 COMPARISON OF VERTICAL PRESSURES OBTAINED BY 
LATTICE SOLUTION AND BOUSSINESQ'S SOLUTION 
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could be solved simply by altering the boundary conditions either in t e r m s  

of deflections o r  p re s su res  i n  the footing a rea .  

I 

Both theory and experience have shown that the distribution of ver t i -  

cal  p re s su re  i s  more  o r  l e s s  independent of the physical propert ies  of the 

medium. Conventional engineering practice is  to  assume the medium to I 

(17) be l inear when calculating vertical  p ressures  for  consolidation predictions. 

While ver t ical  p re s su re  distributions a re  not highly dependent on soil proper-  

t ies ,  the states of s t r e s s  are dependent of soil propert ies  and will vary ap- 

preciably from the l inear case  depending upon the nonlinearity of the soil.  

Since the consolidation of a soil i s  dependent on the s ta tes  of s t r e s s  and 

not just the vertical  s t r e s s ,  the degree which the s ta tes  of s t r e s s  vary with 

nonlinearity needs to be studied. The method for  solving two -dimensional 

s t r e s s  problems in  nonlinear mediums to be presented in  the next chapter 

can be  used in  this regard.  

sidering the soil medium as nonlinear. 

The above footing problem will be solved con- 

Lattice Analogy for Three-Dimensional S t r e s s  Problems ’ 

In the preceding sections lattice analogy techniques were developed 

and used to solve stress problems for particular s t r e s s  conditions (plane- 

s t r e s s  and plane-strain) in l inear isotropic mediums. 

discuss  briefly the extension of the analogy to the general  three-dimensional 

stre s s problem. 

This section will 

An extension of the latt ice analogy technique to the three-dimensional 

ca se  w a s  partially made when Hrennikoff proposed the three-dimensional 

latt ice cel l  shown in F i g .  13 for a linear isotropic medium. (7) Since th i s  

latt ice cel l  possesses  three identical axes of symmetry,  only three  s t ruc-  



. 
42 

FIGURE 13 HRENNIKOFF THREE-DIMENSIONAL LATTICE CELL 
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t u ra l  charac te r i s t ics  A, A,, A2 a r e  necessary .  In Hrennikoff's 

presentation only br ief  r e m a r k s  were  made i n  r ega rd  to the development 

of a complete method of solution based on this  three-dimensional latt ice 

cell .  F o r  a complete method of solution which i s  of pract ical  use,  the 

technique for  generating the stiffness m a t r i x  equation and an efficient 

method fo r  solving this ma t r ix  equation are required.  

tion of the  stiffness mat r ix  equation i s  pr imar i ly  a straightforward exten- 

While the genera-  
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sion of the two-dimensional c a s e s  cited above, i t  i s  nevertheless  a step 

which needs some study in  o rde r  to obtain a versa t i le  and efficient method. 

The second step, the solution of the expanded mat r ix  equation, i s  by fa r  

the most  difficult aspect  involved in this extension. Recommendations for 

solving the expanded ma t r ix  equation w i l l  be presented in  the next chapter.  

Since the latt ice ce l l  shown in  Fig .  13 is simply connected, only 

three  translational components of movement of each node point a r e  required 

to descr ibe  the distortion of the lattice. In the two-dimensional s t r e s s  

c a s e  only two components were  required.  In writing the th ree  general  

stiffness equations about an inter ior  node, that  is, the three  equations of 

static equilibrium in  t e r m s  of node movements and s t ruc tura l  st iffnesses,  

the procedure used in Appendix I for  the two-dimensional c a s e  i s  recom-  

mended. Again, only three  stiffness coefficients SA, SAFA, SASP 

a r e  needed to descr ibe  fully the deformability charac te r i s t ics  of an indi- 

vidual lattice cell .  

is shown i n  Fig.  14. 

A two by two by two lattice representat ion of a cube 

F r o m  this figure it i s  seen that a total  of 45 node 

movements are involved i n  the th ree  equilibrium equations about an in te r -  

io r  node, while i n  the two-dimensional c a s e  only 18 node movements were  

involved. 
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FIGURE 14 A TWO BY TWO BY T W O  LATTICE REPRESENTATION OF A CUBE 
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The extension of the lattice analogy technique to the general three- 

dimensional s t ress  case i s  deemed feasible and practical for some s t r e s s  

problems involving linear isotropic medium s. 

not require additional theoretical developments of the analogy, it wil l  r e -  

quire considerable formulation and programming and applications of im- 

proved methods for solving large systems of equations. 

mendations for the extension a re  presented in Chapter 4. . 

While this extension wil l  

Additional recom- 



CHA.PTER THREE 

LATTICE ANALOGY O F  TWO-DIMENSIONAL STRESS PROBLEMS 

IN NONLINEAR MEDIUMS 

Many engineering mater ia l s  have nonlinear s t r e s s -  s t ra in  behavior. 

Solutions of s t r e s s  problems by the theory of elasticity based on l inearity 

assumption for  such mater ia l s  a r e  approximations. The degree  of ap- 

proximation i s  dependent on the degree of nonlinearity of the mater ia l .  

In this  section a method for solving two-dimensional s t r e s s  problems, 

which will consider the nonlinearity of the medium, will be developed 

and two example problems will be solved. 

la t t ice  analogy presented i n  the preceding chapter for stress problems i n  

l inear  isotropic mediums. Essentially, the procedure cons is t s  of r ep re -  

senting smal l  sections of the nonlinear medium (sect ions being the s ize  of 

the la t t ice  ce l l s )  by pseudo- sections of l inear  isotropic mater ia l  which are 

defined by two pseudo-elastic constants E and v . When subjected to 

the same state of s t ra in  which exis ts in  the nonlinear mater ia l ,  the pseudo- 

l inear  block will develop the same state of stress as that existing i n  the 

nonlinear mater ia l .  

by a pseudo-linear mater ia l  will be instantaneous in  nature;  that  is, for 

each state of s t ra in  there  exists a particular instantaneous pseudo-linear 

mater ia l  representation. The key to the solution of a problem i s  to find 

the par t icular  pseudo-linear mater ia l  (E and v for  each latt ice cel l )  

which will properly r ep resen t  the behavior of the actual nonlinear medium 

under a given se t  of boundary conditions. 

The method i s  based on the 

In general  this representation of a nonlinear mater ia l  

I 
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F o r  convenience in presenting the latt ice analogy, the nonlinear 

medium i s  considered to be homogeneous and isotropic in  its physical 

propert ies .  The medium is also considered to be hyperelastic;  that is, 

the state of stress i s  only a function of the state of s t ra in  and is  not de- 

pendent upon the his tory of stress and s t ra in .  

every  s ta te  of s t r a in  the re  ex is t s  a unique s ta te  of stress. 

Stated more  concisely, f o r  

The above considerations are made only to facilitate the presentation 

of the basic  theory and a r e  not totally rigid l imitations to the general  

latt ice technique. 

o rde r  of the latt ice cel l  dimension. 

pretation schemes in  the method of solution (computer program).  

hyper elasticity could be  considered only i f  considerable logic and memory  

capabili t ies were  included i n  the method of solution. Obviously, develop- 

ment of a capability to solve s t r e s s  problems involving hyperelastic me-  

diums has  to precede consideration of the nonhyperelastic problem. 

Nonhomogeneitycould be represented to a scale on the 

This would involve additional in te r -  

Non- 

Representation of a Nonlinear Medium by a Pseudo-Linear Medium 

As previously mentioned, the method for solving two-dimensional 

s t r e s s  problems in  nonlinear mediums by the lattice technique depends 

upon the ability to  represent  the behavior of the nonlinear medium under a 

given s ta te  of stress by a pseudo-linear isotropic mater ia l .  In general  this 

representat ion will be instantaneous in nature,  but it will be sufficient in  

its approximation to descr ibe  the nonlinear medium over a smal l  range of 

behavior. 

of nonlinearity. 

The range of approximation will be dependent upon the degree 
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In order  to i l lustrate better the method of solution to be presented in 

the next section, graphical representations of the s t r e s s -  s t ra in  behavior 

of a l inear and a nonlinear mater ia l  under the conditions of p lane-s t ress  o r  

of plane-strain are shown in Fig.  15. If the mater ia l  i s  l inear,  the plane 

surfaces  shown in  Fig. 15a would describe the relationships between states 

of s t r e s s  and states of strain.  

representation of Hooke's Law as given by Eqs. 7a and 7b o r  Eqs. 10a and 

lob. If the mater ia l  i s  nonlinear, the two surfaces  would not be plane, but 

, 

These two planes a r e  simply a graphical 

ra ther  would be warped as depicted in  F i g .  15b. 

Analytical expressions of the nonlinear functions ol = f ( q ,  e a )  and 

o2 = d s , ,  "1) i n  F i g .  15b for  engineering mater ia l s  have not been published 

to any extent in the l i terature .  

lytical solution of a nonlinear s t r e s s  problem is a description of the s t r e s s -  

s t ra in  relationship. 

form of approximate analytical functions of the actual s t r e s s -  s t ra in  relations, 

o r  i n  the majority of cases ,  i n  the form of numerical  data f rom a series 

of experimental t es t s .  

i s  i l lustrated in  F i g .  16. 

would be represented by d iscre te  points of experimental data. 

of digitized information i s  readily adaptable as input information for a 

digital computer program. 

Quite obviously the prerequisite to an ana- 

This s t ress -s t ra in  information would be either in  the 

A possible scheme for the la t ter  type of information 

The warped surface of the nonlinear mater ia l  

This  type 

The method of solution involves determining the unique pseudo-linear 

mater ia l  which will possess  the same state of stress as that of the nonlinear 

mater ia l  for the same state of strain.  

mater ia l  can be considered as instantaneous and can change with each i t e r a -  

tion. 

The charac te r i s t ics  of the pseudo 

Since in an actual problem the states of stress and s t ra in  will vary  
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PLANE SURFACES 

U I  = A A c ,  + B B c ~  

HYDROSTATIC 
L I N E  € 1  = e 2  

=I - 4 2  
- 

4 2 =  A A 8 2  + BBal 

WHERE: PLANE STRESS 

f l 

€ 2  

E 
I - u  

A A =  - 2 

PLANE STRAIN 
___c € 1  

u t  
BB = 

( I+u) ( I - 2 v  ) 

( a )  STRESS - STRAIN RELATIONSHIPS FOR A L I N E A R  ISOTROPIC M A T E R I A L  

WARPED SURFACES 

UI = f ( C i  982) 

4 2  = flq ,4 

‘2 

S T R E S S  - S T R A I N  RELATIONSHIPS FOR A N O N L I N E A R  ISOTROPIC MATERIAL 

FIGURE 15 L I N E A R  AND N O N L I N E A R  S T R E S S - S T R A I N  RELATION- 
SHIPS FOR TWO-DIMENSIONAL S T R E S S  CONDITIONS 
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EXPERIMENTAL DATA 

STATE OF STRESS STATE OF STRAIN 

o,,u, 0 , G  € 1  .E2 

LABORATORY TEST T O  DEVELOP NUMERICAL STRESS - STRAIN D-T, 

( a  1 

L 

NUMERICAL REPRESENTATION OF STRESS - STRAIN RELATIONSHIPS 

(b 1 

FIGURE 16 NUMERICAL STRESS-STRAIN DATA NECESSARY FOR A SOLUTION OF 
A TWO-DIMENSIONAL STRESS PROBLEM iN A NONLINEAR MEDIUM 
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throughout the medium, the nonlinear medium is represented  piecewise 

by incremental  sections (individual lattice ce l l s )  which a r e  pseudo l inear .  

The procedure for  determining the pseudo-linear mater ia l ,  which will in- 

stantaneously possess  the same deformability charac te r i s t ic  s as that of 

the nonlinear mater ia l  i s  as follows: 

1. F o r  a given state of s t r a in  in  the nonlinear mater ia l  e l  and 

c2 the result ing state of s t r e s s  o1 and 0, i s  obtained from the 

s t r e s s -  s t ra in  relationships such a s  shown in  Fig.  15b. 

i s  made  that in  the nonlinear isotropic mater ia l  the principal directions 

of s t r a in  and s t r e s s  a r e  the same.  ) 

(The assumption 

2. The values of the elastic constants E and v for  the pseudo- 

l inear  mater ia l s  a r e  computed from the two equations of Hooke's Law, 

Eqs.  7 a  and 7b o r  Eqs .  loa and lob. 

3 .  With these elastic constants the s t ruc tura l  e lements  of the latt ice 

ce l l  a r e  computed f rom the equations which define the s t ruc tura l  elements,  

F igs .  1 and 3 .  

In essence the elastic constants simply define the two secant planes 

which will in te rsec t  the warped surfaces of the nonlinear mater ia l  at the 

instantaneous coordinates '01, €1, c2 and 02, cl, c2 . By the 

above procedure the proper t ies  of each latt ice ce l l  i n  the ent i re  latt ice 

are obtained. 

representat ion of the ent i re  nonlinear medium for  each set of boundary 

conditions. 

I terat ive procedures  a r e  requi red  to find the unique la t t ice  



- 52  

Method for  Solution of Two-Dimensional S t r e s s  P rob lems  i n  Nonlinear 

Mediums 

The theory and procedure fo r  solving s t r e s s  problems using a latt ice 

analogy of a l inear  isotropic medium w e r e  presented in  the preceding 

chapter .  

l inear  mater ia l  was  descr ibed in the immediate  past section. 

bining these procedures ,  a method for solving two-dimensional stress 

problems in  nonlinear isotropic mediums will be outlined and i l lustrated 

below. Even though these procedures a r e  essentially the same as those 

for  a l inear  mater ia l ,  the s teps  to  obtain a solution will be given here .  

A technique of representing a nonlinear mater ia l  by a pseudo- 

By com- 

1. The continuous body i s  represented by a latt ice consisting of in- 

The structural  e lements  of these latt ice ce l l s  a r e  dividual latt ice cel ls .  

based on s ize  and thickness dimensions of the ce l l  a and t and the 

elastic constants E and v for each cell.  F o r  the first iteration, 

elastic constants are assumed for each cell .  

elastic constants used are those obtained f rom the previous i teration. 

Boundary conditions in  t e r m s  of deflections o r  loads at  main 

In following i terat ions the 

2 .  

node points a r e  applied to the lattice which was  defined i n  Step 1. 

3 .  The system of l inear simultaneous equations Sx = f result ing 

from the la t t ice  representation and the applied boundary conditions i s  

generated.  

the solution of th i s  system of equations. 

The movements of the main node points a r e  obtained f rom 

4. F r o m  the obtained node movements, s t ra in  components are 

computed by finite difference methods. These s t r a in  components are 
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used to determine the states of strain at  the center of each lattice cell.  

5. The states of s t ress  at the center of each lattice cell a r e  deter- 

mined by entering the stress- strain relationship, (3, = f (  % , e 2 )  

and 

Step 4. 

o2 = !(e1, e2 ), Fig. 15b with the states of strain obtained i n  

6 .  Tests for closure tolerance a re  made for main node point move- 

ments. If closure tolerances a re  not met, the procedure i s  to go to 

Step 7 .  If closure i s  satisfied, the procedure i s  to go to Step 8. 

7. Revised pseudo-elastic constants E and V a r e  computed 

from Eqs. 7a and 7b o r  Eqs. loa and 10b according to the s t ress  condi- 

tion by using the states of s t ress  and strain obtained i n  Steps 4 and 5 

above. After the computation of these revised elastic constants the pro- 

cedure is to go to Step 1 for next iterative cycle. 

8. Solution has converged to within the desired tolerance; there- 

fore, the procedure is to tabulate results of last iteration for the final 

solution of the problem. In the program written for the above method 

of solution, the output information consists of the movement of each 

main node point xi ; the s t ress  and strain components in the xy- 

directions u,, cry, T , ~ ,  e,, e y ,  yxy;  and the principal s t resses  

and strains o,, cr, , e,, e2 and their orientation angle 8,  , 

measured from the 1-direction to the x-direction, counterclockwise 

being positive. Stress  and strain components are given at each cell  center. 

The method for  solution of two-dimensional s t r e s s  problems involving 

nonlinear mediums detailed above w i l l  be illustrated i n  the next section by 

solving two example p i  oblem s. 
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I l lustrated Nonlinear S t r e s s  Problems 

In the preceding sections a technique for  using latt ice analogy was 

developed for solving nonlinear s t r e s s  problems. 

l u s t r a t e  the technique by presenting solutions to two problems. 

This  section will il- 

Complete stress- s t ra in  relationships for  nonlinear mater ia ls ,  that 

is, relationships which a r e  valid over a wide range of stress states, are 

quite l imited in  the l i t e r a tu re  either i n  analytical o r  numerical  form.  

Since this  study i s  developmental i n  nature,  a convenient analytical form,  

Eq. 18, is used to  descr ibe  the  nonlinear s t r e s s - s t r a i n  behavior for  the 

mater ia l  in  the i l lustrated problems. 

o1 = 25.0 Sin (86. 60el t 5 0 . 0 0 ~ ~ ) .  

0, = 25.0 Sin (86.60~~ t 5 0 . 0 0 ~ ~ ) .  (18) 

A graphical representat ion of Eq. 18 would be s imi la r  to  the warped su r -  

faces  shown i n  F ig .  15b. The units of o1 and o, a r e  lb / in2 .  

The f i r s t  problem i s  one  of several simple uniform s t r e s s  problems 

which were  solved in  the process  of developing and verifying the method 

of solution. 

The problem i s  shown i n  Fig.  17. The rectangular  block is  loaded 

along i ts  x-face either by  a s t r e s s  condition ox o r  a distortion A , .  

The z-face i s  considered to remain  plane and does not deflect i n  the z -  

direction. 

conditions i s  given in Fig.  17. 

for ox and A, for  eight different loading conditions are tabulated in  

The y-face is a f r e e  surface. A summary  of these boundary 

The la t t ice  solution and the exact solution 
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T lCE SOLUTION 
I 

Ax AT Xz4.0 ITERATIONS 

-.02851 5 
-.06425 8 
-.074 54 17 
-.08917 30 
- 10489 20 
-.I06 76 40 
- .06000 9 
- 10000 20 

Z PROBLEM 

SPECIFIED 
CLOSURE 

I o-6 

I o-8 
I o-8 

* 10-8 

I o-8 
10-8 

-!& 

RUN NO. 
SEE ( v )  
ABOVE 

I 
2 
3 
4 
5 
6 
7 
8 

A- =x 

- x  

L A T T I C E  REPRESENTATION 

BOUNDARY CONDl TlONS AND DESCRIPTION 

( i )  PLANE STRAIN : C Z = ~ Z = ~ ~ = O  
( i  i) STRESS :uY =rXY= 0 
( i i i )DEFLECTION DATUM :Ax = O  A T  X = O  ;Ay = O  AT X = O , Y = O  
( i v )  SPECIFIED BOUNDARY CONDITIONS FOR INDIVIDUAL RUNS 

QX AT Xz4.0 FOR RUN NUMBERS 1,2,3,4,5,6 
Ax AT Xz4.0 FOR RUN NUMBERS 7,8 

( v )  MATERIAL  DESCRIPTION :QI ~ 2 5 . 0  SIN (86.6~1+50.0€2) 
4 2  ~ 2 5 . 0  SIN (86.6c2+5O.O~ I ) 

PARTIAL RESULTS OF L A T T I C E  SOLUTION 

E X A C T  S O L U T I O K ~  I L A 1  

QX 

-10.00 
-20.00 
-22.00 
- 24.00 
- 2 5.00 
- 25.00 
-I 9.04 
-24.80 

Ax AT Xz4.0 

-.02851 
-.06425 
-.074 54 
-.08914 
-.I 0 883 
-.I0883 
-.06000 
-.IO000 

QX 

-10.00 
-20.00 
-22.00 
-2400 
-24.96 
-24.99 
-19.04 
-24.80 

* CLOSURE TOLERANCE WAS NOT ACHIEVED 

FIGURE 17 TYPICAL NONLINEAR MEDIUM TEST PROBLEM, 
PROBLEM STATEMENT AND PARTIAL RESULTS 
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Fig.  17. The exact solution fo r  ox ver sus  A, for the  above problem 

i s  in equation form. 

ox = 25. 0 Sin (s Ax) 
Good agreement between the lattice and exact solutions is achieved 

fo r  all loading conditions except for Runs 5 and 6 where 

25. 0 lb/in.  , a maximum. After 20 and 40 i terat ions the disagreements  

in  the deflections Ax a r e  approximately 4 and 2 per  cent, respectively.  

The e r r o r  in  ox 

s t r e s s  i s  essentially insensitive to s t ra in .  

points graphically. 

ox = 
2 

i s  smaller  since at this s t r e s s  level the magnitude of 

Figure 18 i l lustrates  these 

The resu l t s  tabulated in Fig.  17 are plotted in  F ig .  18. The load de- 

flection curve is seen to be nonlinear. The solutions for  Runs 5 and 6 are 

seen to l ie  in  the range where the load-deflection curvehas approximately 

ze ro  slope. 

I teration data for several  runs are given i n  Fig. 19. The latt ice so lu-  

tion for  Run 6 converges relatively slowly compared to the other runs.  

4, while having only a 4 per  cent lower stress level, converges considerably 

fas te r  than Run 6. 

s t r e s s  i s  sufficient to  place the solution of Run 4 in  a range where the slope 

of the load-deflection relationship i s  substantially l a rge r  than Run 6 as can  

be seen in Fig.  18. 

for Runs 6 and 8 a r e  essentially equal,  Run 6 required four t imes  the num- 

be r  of i terat ions as Run 8 for  the same accuracy in  solutions. 

Run 

This i s  due to  the fact that the 4 per  cent decrease  in  

It is  interesting to  note that while the s t r e s s  levels  

This  i s  be- 
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-2 5.0 

(u -20.0 

m 

z - 
\ 

-I 

u) 
v) 

a 
I- 
v) 

X 
b 

Y 

w -15.0 

-10.0 

- 5.0 

-7 EXACT SOLUTION 
25 Ax 

U X =  25 SIN __ 

EXACT SOLUTION 
FOR RUNS 5 8. 6 7  

8 .  ..h 

6 40 ITERATIONS 
y 3  RUN 5 20  ITERATIONS 

0 RUNS WHERE O X  WAS SPECIFIED 
A RUNS WHERE AXWAS SPECIFIED 

0 I 1 I I I 1 I 1 I I 1 
0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.10 -0.11 

AX DEFLECTION OF RIGHT END AT X = 4.0 IN (IN.) 

FIGURE 18 PARTIAL RESULTS OF THE NONLINEAR TEST PROBLEM SHOWN 
IN FIGURE 17 COMPARING EXACT AND LATTICE SOLUTIONS 
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cause the deflection Ax = 0.10'' was specified a s  the loading condition 

for Run 8. Hence, closure tolerance for A, deflections were satisfied 

on each iteration and only the Ay 

As previously mentioned, solutions of several uniform s t r e s s  prob- 

deflections needed to converge. 

lems for nonlinear mediums were obtained by the lattice analogy tech- 

nique. These problems were similar to the problem shown in Fig. 17. 

Boundary conditions for these problems involved both uniform distor- 

tions and s t ress  conditions along the edges of the rectangular body. 

The solutions obtained were in  agreement with known solutions. 

these problems the level of s t r e s s  was  varied. 

state of s t ress  entered the nonlinear region, the required number of 

iterations for solution 

Runs 5 and 6. 

ciated and is common knowledge, it desires  reiteration here. 

The closure criterion used in this study was quite simple. 

For  

In all cases  when the 

increased considerably a s  in the above problem, 

While this convergent characteristic is readily appre- 

The node 

deflections obtained for each iteration were compared with the deflec- 

tions obtained from the immediately preceding iteration. 

were equal to or less  than the specified closure tolerance, the solution 

was considered to be converged. This closure criterion could be mis- 

If the differences 

leading especially i f  the s t ress  level is in the plastic range. 

example, consider the iteration data for  Run 6 as shown in Fig. 19. 

solution is seen to be converging slowly to the exact solution. The 

difference between deflections for  each iteration i s  seen to be quite 

( A x  = 0.106707 in. 0.106758 in. for iteration 39 and 40, respective 

while the exact deflection value i s  0.10883 in. 

Fo r  

The 

small 

Y) 
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i 
The second il lustrative nonlinear problem i s  a long s t r ip  footing 

on a nonlinear foundation medium. The s t r e s s -  s t ra in  proper t ies  of 

the foundation medium a r e  defined by Eq. 18. Solutions were  obtained 

for  six different footing p r e s s u r e s  by essentially the manner as for  the 

l inear  footing problem in  Chap. 2.  

semi-infinite half space by a crude lattice and then increasing the fine- 

nes s  of the latt ice around the foooting a r e a  as shown in  Fig.  11, Chap. 

The scheme of representing the 

2, was  used. In these solutions the mater ia l  was  assumed to  be l in- 

ear ly  homogenous for  the first iteration; that is, the medium was  

described by single assumed values of E and u. The same initial 

trial values  of E and u were  assumed in the solution of each latt ice 

spacing for all s ix  footing p res su res .  Pe rhaps  a more  efficient pro-  

cedure  would have been to  assume nonhomogeneous initial trial values 

of E and u based on preceding solutions. This  was  not done i n  this  

problem because the t ime required for entering this  data as input is 

lengthy. 

and v on values of preceding solutions should be studied. 

F igu res  20, 21,and 22 present ,  in par t ,  the solution of the long 

In future studies the mer i t  of using initial trial values E 

s t r ip  footing on the nonlinear foundation medium descr ibed by Eq. 18. 

In the upper par t  of F ig .  20, the loading condition and the deflection 

of the  foundation at the footing level  are shown for  the c a s e  where 

0 = 3, 000 lb/ft2 = 20. 83 lb/ in .  ’. In the lower pa r t  of Fig.  20, the 

footing p r e s s u r e  v e r s u s  centerline deflection curve  is shown. The 

stress distributions fo r  l inear  and nonlinear foundation media cases 

are compared  in Fig. 21 and 22. These stress distributions are for  
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the 3, 000 lb/ft2 footing pressure and 2-1/2-ft lattice cell solutions. Varia- 

tions between the s t r e s s  distributions for the two cases  are seen to occur 

only in  the immediate area around the footing. 

s t r e s s  distributions were made for higher footing pressures  the variation 

would no doubt be greater.  With the capacity of the computer program 

written for this initial study, completely satisfactory solutions for the 

higher footing pressures  were not obtainable. Therefore, the s t r e s s  dis- 

tributions for the case of 3,000 lb/ft2 footing pressure a re  given here. 

If comparisons between 

For  footing pressures  of u = 3 ,  000 o r  3,280 lb/ft2 the vertical 

at the corner lattice cell (the lattice cell  adjacent to normal s t r e s s  uy 

the footing center-line and immediately below the surface) was larger 

than the applied footing pressure.  

2. 5-ft lattice cells. 

During the iterations involved in converging to a solution, the s t r e s s  

at the corner cell progressively grew with each iteration. When the nodal 

movements had converged to the specified closure tolerance, the s t ress  

(sy was slightly larger  than the applied footing pressure.  For  the case 

where the footing pressure was equal to 3,600 lb/ft2, a converged solu- 

tion was not obtainable for the closure tolerances specified. The reason 

for this failure can be explained by noting the s t ress-s t ra in  characteris- 

t i c s  of the foundation medium, Eq. 18. 

s t r e s s  the foundation medium could support i s  25 lb/in.a o r  3,600 lb/ft2. 

When the vertical s t r e s s  u, passed this maximum point of the s t ress -  

strain surface, the corner lattice cell became progressively weaker and 

the solution therefore diverged. 

This occurred in solutions based on 

This size lattice cell  i s  shown in Figs.  21 and 22. 

oy 

The maximum possible normal 

The deflection value shown in Fig. 20 
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for a footing pressure of 3,600 lb/ft2 is the value given by the iteration 

cycle immediately preceding divergence of the solution. 

Discussion of E r r o r s  Inherent in the Lattice Techniaue 

In the preceding section the lattice analogy solution of the nonlinear 

footing problem yielded unrealistic vertical s t resses  uY in the im- 

mediate region beneath the loaded area. 

s t r e s s  will  be discussed here and recommendations made for further study. 

The reason for this unrealistic 

To facilitate this discussion a brief review of the lattice technique for 

solving s t ress  problems for continuous bodies wil l  be given. The continu- 

ous body (referred to hereafter as body) i s  f i rs t  represented by an articu- 

lated framework or  lattice. 

the outline of the body. 

nodes to represent boundary conditions consisting of s t resses .  

equivalent loads a re  applied to the interior nodes to represent body forces. 

Node deflections a r e  specified to represent boundary conditions consisting 

of distortions. 

tained by stiffness methods. 

represent at discrete points (node points) the distortion of the body. 

States of strain at discrete points in  the body (centers of lattice cells) a r e  

obtained by using these node movements in finite difference expressions of 

strain components. States of stress at discrete points in the body (centers 

of lattice cells) a r e  obtained by entering the s t ress -  s t r a i n s  relationships 

for the body material with the states of strain. 

The lattice possesses to an approximation 

Statically equivalent loads a re  applied to external 

Statically 

Node deflections resulting from these loadings a re  ob- 

These node deflections a re  considered to 

From the above outline the accuracy of a lattice solution of a s t ress  

problem is seen to be basically dependent upon the ability of the lattice 
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analogy to furnish, in sufficient detail and accuracy, the distortion of the 

stressed body. 

As in other methods of solution of differential equations based on repre-  

senting continuous functions by lumped paramebers, 

formulate a general expression for the accuracy of a solution thus achieved 

for a given mesh size. The accuracy achieved by a given mesh size can be 

quite different depending upon the nature of the s t r e s s  problem. 

it i s  not possible to 

It i s  beneficial to list here the data which describe completely a s t ress  

problem: (1) the geometry of the body, ( 2 )  the material of the body, and 

( 3 )  the boundary conditions on the body. All three types of data influence 

the requirement of mesh size. 

ing a feel for the accuracy of lumped parameter solutions is to study the 

cause and effect of each source of error  separately. 

c edur e her e. 

The usual procedure followed in establish- 

This will be the pro- 

Solution of the Stiffness Matrix Equation [ S i  (x) = ( f ) :  The solution 

of the stiffness matrix equation yields the distortions at  discrete points 

throughout the body. 

and in  turn states of s t ress  throughout the body. 

of the stiffness matrix equation i s  in error,  the entire solution will be in 

e r ror .  The method for solving large systems of simultaneous equations 

will involve either direct elimination or some iterative technique. 

case the solution will be in e r r o r  to some degree. 

of the stiffness matrix equation, the accuracy should be such that the dis- 

tortions can express in finite difference form the components of strain to 

acceptable accuracy. 

These distortions a re  used to evaluate states of strain 

Therefore, i f  the solution 

In either 

In regard to the solution 

When node movements a r e  substituted back into the 
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equations of equilibrium about the nodes, the equations should be satisfied 

at least  to the same degree of accuracy as that desired for strains and 

s t resses ,  

quired accuracy of the solution of the stiffness matrix equation. 

This criterion can be considered to be a lower bound to the r e -  

Geometry of the Body: The continuous body is represented by a lat- 

tice consisting of square lattice cells. 

lar in shape or  possesses irregularities in i t s  boundary, the lattice repre- 

sentation can only possess to an approximation the same outline as that of 

the body. The degree of approximation decreases as the fineness of mesh 

Whenever the body i s  nonrectangu- 

size is increased. 

saving factor for many cases in that the e r ro r  due to the approximation of 

the irregularity is dominant only in a small region surrounding the irregu- 

larity. If detailed information is desired in  the vicinity of the irregularity, 

solutions using progressively finer mesh sizes may be made in the region 

in question. 

With regard to localized irregularities, there exists a 

Material of the Body: In s t ress  problems, s t ress-s t ra in  relationships 

for the material a r e  required throughout the body. 

a r e  homogeneous throughout the body, there will be no source of e r ro r ,  in 

regard to material, created by the lattice representation. 

is nonhomogeneous, approximations will exist in the lattice representation 

of t h e  body and a source of e r r o r  w i l l  be introduced. 

involving nonlinear mediums, the pseudo-linear medium used to represent 

the nonlinear medium will  be nonhomogeneous. 

will  always exist in regard to material properties in nonlinear problems. 

Again, this e r ro r  i s  minimized a s  the mesh size is made finer. 

If these relationships 

If the material 

Fo r  s t r e s s  problems 

Hence, a source of e r r o r  
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Boundary Conditions on the Body: The boundary conditions with respect 

to s t resses  o r  body forces a re  approximated in the lattice representation of 

the problem by statically equivalent loads at node points. The boundary 

conditions with respect to body distortions a re  represented in the lattice 

representation of the problem by node deflections. 

from these procedures is readily apparent. 

mized a s  the mesh size i s  decreased. 

irregularit ies in the geometrical boundary of the body, the effects of these 

approximations of boundary conditions are in many cases  dominant only in  

small regions surrounding the point of loading o r  distortion (Saint-Venant 

Principle). 

s t resses  o r  distorted boundaries, solutions using progressively finer mesh 

size may be made in the region in question. 

The source of e r r o r s  

Again, these e r r o r s  are mini- 

A s  in the e r ro r  arising from the 

If detailed information is desired in the vicinity of the applied 

Finite Difference Repre sentation of Strains: The distribution of strains 

throughout the body a re  represented at discrete points by strains computed 

by finite difference methods using node movements. Even i f  the node move- 

ments a re  determined precisely by the lattice analogy, the strains compo- 

nents will  still be approximations of the actual strains since the finite dif- 

ference expressions a re  approximations of derivatives of distortions. 

the scheme for computing strains wi l l  always be a source of e r ror .  Again, 

a s  the mesh size decreases, the e r ro r s  involved in  the finite difference ex- 

pressions a re  minimized. 

Hence, 

The unrealistic vertical s t ress  0, obtained in the nonlinear footing 

problem at the corner cell (corner cell being the cell adjacent to the footing 

centerline and immediately beneath the surface) w a s  caused by the inability 

of the lattice to represent the highly variable conditions encountered in the 
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immediate a rea  of the footing. 

medium representing the nonlinear medium coupled with the highly nonuni- 

form s t r e s s  and strain distributions in the immediate area of the footing 

caused the highly variable conditions. 

The nonhomogeneity of the pseudo-linear 

This conclusion is  based on a brief analytical study. The study con- 

The only dif- sisted of solving a similar footing problem to those above. 

ference being that this experimental problem consisted of a simple rectangu- 

la r  block with f r ee  edges and the medium was consideredtobeanonhanogeneous 

linear medium instead of the homogeneous nonlinear medium described by 

Eq. 18. 

the loaded area and i t s  depth was 1-1/2 times the length of the loaded area. 

The nonhomogeneous linear medium was approximately the same as  the 

pseudo-linear medium computed in the third iteration cycle of the solution 

for the 3, 000 lb/ft2 

elasticity E and the Poisson's ratio v for the corner cell were 20 per 

cent l e s s  and 4 per cent larger, respectively, than f o r  the adjacent cells. 

The magnitude of the vertical s t ress  uy 

solution of this experimental problem was approximately 8 per cent higher 

than the footing pressure.  The solution of the similar footing problem on a 

linear homogeneous medium given in Chap. 2 yielded a ay s t r e s s  for the 

corner cell which was slightly less  than the applied footing pressure.  This 

result  indicates that the introduction of material nonhomogeneity was the 

cause for the unrealistic uY s t r e s s  at the corner cell. The solution of 

the lattice was checked by checking the equilibrium about several nodes. 

The equilibrium checks showed that the nodes were in equilibrium with the 

external loads. 

The width of the rectangular block was 2-1/2  t imes the length of 

footing pressure case. F o r  this case the modulus of 

at the corner cell obtained in the 
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A computer program with a larger capacity than the one written for 

this initial study i s  fe l t  necessary to investigate adequately the effect of 

nonhomogeneity. 

in Chap. 4. 

Means of increasing the program capacity a r e  discussed 

The s t r e s s -  s t ra in  character is t ics  defined by Eq. 18 do not realist ically 

represent  an actual foundation medium. For example, the maximum nor- 

mal s t r e s s  that could exist in  the medium i s  25 lb / in .2  regardless  of the 

state of s t r e s s  in the material .  There i s  very little in the l i terature  de- 

scribing the actual shape of the s t ress -s t ra in  surfaces  shown in Fig.  15b. 

While i t  i s  felt that Eq. 18 was adequate for this initial study, it i s  recom- 

mended that additional study be made to obtain more realist ic s t ress -s t ra in  

data. 



CW-T-TER S O U R  

DISCUSSION O F  COMPUTATIONAL METHODS 

The theory and the techniques for solving s t ress  problems in  continu- 

ous bodies by representing these bodies by lattices of particular structural 

characteristics were presented in the preceding chapters. 

ogy of a continuous body results in a system of linear simultaneous equa- 

tions represented by the stiffness matrix equation, Eq. 19. 

A lattice anal- 

The solution of this system of equations yields the movements of each 

lattice node point. 

the lattice analogy technique depend greatly upon the development and usage 

of efficient and accurate methods f o r  solving the above matrix equation. 

When considering the computational requirements involved in  obtaining a 

solution of a s t ress  problem in a nonlinear medium, the necessity of effi- 

ciency i s  readily appreciated since several or perhaps numerous iterative 

cycles a re  required in converging to the final solution. 

a nonlinear problem requires a solution of Eq. 19. 

As stated previously, the feasibility and usefulness of 

Each iteration in  

The solution of partial differential equations, e specially the parabolic 

and elliptic types, by numerical procedures involves discrete approxima- 

tions of these partial differential equations. Matrix equations in the form 

of Eq. 19 a r i se  from these approximations. Numerous papers and texts 

have been written concerning the various methods of solution of these ma- 

tr ix equations. With the advent of the high speed electronic digital com- 

71 
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puters, new methods for solving large systems of linear simultaneous equa- 

tions have been o r  a re  currently being developed. 

exclusively confined to cyclic iterative methods in contrast to non-cyclic 

iterative methods such a s  Southwell's relaxation method. It i s  the purpose 

of this chapter to enumerate and briefly review several methods of solution 

of Eq. 19 which a r e  considered the most promising in the solution of the 

particular matrix equation derived f rom the lattice analogies and to list 

several computational schemes which w i l l  improve the efficiency of the pro- 

grammed method of solution. The first section wil l  briefly present the di- 

rect  elimination procedure used to solve the matrix equation encountered in 

the development of the lattice analogy method. The second section wil l  dis- 

cuss and reference several possible methods of solution for the extension 

of the lattice analogy to three-dimensional problems o r  to finer lattice sys-  

tems in two-dimensional s t ress  problems. 

These methods a re  almost 

It should be emphasized that solving Eq. 19 i s  by no means trivial. 

While there a re  several methods currently available for solving relatively 

large matrix equations, there exists in  the l i terature little in  the way of 

concrete recommendations about solving specific types and sizes of equa- 

tion systems. 

dictory from one study to the next. 

Also, the more general recommendations a r e  often contra- 

For convenience in  discussing the various methods of solution of Eq. 

19, various properties of the coefficient matrix S a re  listed here. 

1.  The matrix S i s  a square multiple diagonally banded matrix. 

Some investigators classify the matrix S a s  a triple-diagonal-band matrix. 

2. The matrix S is a real  symmetric mattix. This i s  t r u e  even in 

nonlinear mediums since pseudo-linear mediums a r e  used to represent the 



nonlinear mediums at instantaneous states of s t r e s s  and s t ra in .  

3 .  The mat r ix  S i s  non-singular, that i s  the determinant of the 

ma t r ix  S is not equal to zero .  Therefore, since the inverse  of A ex- 

ists there  i s  a unique solution of the mat r ix  Eq. 19 for  each load vector f .  

4. The elements  s i ,  along the main diagonal of the mat r ix  S 

are non-zero and non-negative. 

1 
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Direct  Elimination Procedure  to Solve Stiffness Matrix Equation 

Since this study was pr imar i ly  developmental i n  nature,  a method for 

solving the mat r ix  equation Sx = f which would be easi ly  programmed 

and would yield sufficiently accurate  resu l t s  fo r  modest sized ma t r i ces  

was employed. In a study by White of several  methods for  solving l inear  

simultaneous equatims, conjugate gradients, Gauss-Side11 i te ra t ims ,  ac- 

ce le ra ted  Gauss-Side11 iterations,  and Gaussian elimination, I the  technique 

of d i rec t  Gaussian elimination w a s  found to  be the most  efficient and sa t i s -  

factory method for solving diagonally banded ma t r i ces  with s izes  ranging 

up to 150 equations. (20) A di rec t  elimination procedure was  employed with 

satisfactory resu l t s  by McCormick to  solve the system of equations of h i s  

la t t ice  analogy. (lo) Based on these two papers ,  the d i rec t  elimination 

method was  used in  this  study. Details of this  method are presented below. 

i s  first tr iangularized by eliminating all non- The stiffness ma t r ix  S 

ze ro  elements  below the main diagonal. The elimination proceeds column 

by column, using the main diagonal element i n  the i th row as the pivotal 

element.  Only elements  in  the original band are considered in  any column 

as it i s  known that only ze ro  elements  exist outside this  band width. After 

triangularization, the mat r ix  S is then diagonalized in  a s imilar  manner.  
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During both tr iangularization and diagonalization, operations performed 

on the st iffness e lements  a r e  performed s imi la r ly  on the load vector ele- 

ments  f i .  The unknown vector x i s  evaluated then by simple division. 

Because of the sparseness  of non-zero elements  even within the diagonal 

band, logic was  included in  the program to take full advantage of ze ro  

elements  occurr ing in  any row during the resolution process .  

method of solution is programmed i n  FORTRAN language i n  BODY 2 P r o -  

Since this  

g ram,  Appendix I, perhaps a more  detailed i l lustration may be obtained by 

reviewing this  section of the program. As an e x a q l e  of the speed of com- 

putation, consider the solution of the m a t r i x  equation resulting f rom the 

long s t r ip  footing problem. The stiffness mat r ix  S involved 242 un- 

knowns and a total band width of 51 elements. 

this  ma t r ix  equation was 39 seconds. 

The t ime required to solve 

McCormick's experience with a slightly modified d i rec t  elimination 

procedure to  solve his stiffness matr ix  equation strongly indicated the 

suitability of this method of solution for  two-dimensional s t r e s s  problems. 

The t ime  required for  solutions were  quite acceptable. McCormick re- 

c o r d s  the computer t ime ve r sus  matrix s i ze  in a useful graph form.  The 

d i r ec t  elimination procedure w a s  used to solve a 20 x 40 lattice system. 

F o r  McCormick's lattice ce l l  with v # 1/3, 

sul ts  in a stiffness ma t r ix  of 2,583 unknowns and a total  band width of 

125 elements.  The solution was programmed for  the IBM 7090 and IBM 

7094. It was, of course,  necessary  to  use  tapes i n  this  program. The 

this f ineness  of lat t ice r e -  

s ize  of problems that can  be  handled by a given s ized random access mem- 

o r y  i s  l imited by the total  band width and not by  the number of equations; 
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i. e. , rows in  the dtiffness matrix. 

tal band width is  limited to approximately 320 elements. 

With a 32,000 word memory, the to- 

This means that 

the rectangular width of the lattice is limited to approximately 50 for 

McCormick's plane stress model. It i s  noteworthy to recall that the two- 

dimensional models which employ simply conuected structural elements, 

Figs. 1 and 3, reduce the number of equations by 50% with respect to 

McCormick's model. Hence, even finer lattice systems could be solved 

in  conjunction with this direct elimination method. While several com- 

putational aspects a re  briefly reviewed in  McCormick's paper, the de- 

tails of the method can be obtained from the references of Doolittle and 

Fox. (2B 4, From McCormick's reported experience, the direct elimin- 

ation method of solution is  judged quite satisfactory-for solving the s t i f f -  

ness matrix equation which results from two-dimensional s t ress  prob- 

lems. Tezcan in a recent paper on the stiffness method for plane and 

space structures used a Gaussian elimination process in a manner similar 

to McCormick. (17) Tezcan gives a detailed outline of the computer pro- 

(5) gram of the solution process and references a paper by Galletley. 

Tezcan results parallel those of McCorrnick. 

Whi le  the direct elimination procedures referenced above a r e  con- 

sidered to be satisfactory for two-dimensional stress problems, the use  

of this method in three-dimensional stress problems would not be feas- 

ible for any practical problem because of total band width requirements. 

This fact can be readily appreciated by noting Fig. 14. The most effic- 

ient type of ardering of node movements would lead to a band width on 

the order of 70 elements for a simple two by two by two lattice. There- 
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fore, since storage and core requirements would quickly tax any current- 

ly  available digital computer, other methods for solving matrix equations 

for three-dimensional problems a r e  required. 

Iterative Methods to Solve Stiffness Matrix Equation 

In the above section the direct elimination scheme was shown to  be a 

satisfactory means for solving the stiffness matrix equations resulting 

from two-dimensional s t ress  problems. But the extension to three-dimen- 

sional s t r e s s  problems was seen to tax storage facilities; hence, other 

methods of solution a re  required. The various iterative methods present- 

ed in  the literature employed only the non-zero elements i n  the coefficient 

matrix S. If the procedure o f  "diagonal subscripting" the stiffness ele- 

ments i n  an ordered stiffness matrix i s  used, the storage requirements 

Incorporating this scheme with an es- will  be considerably reduced. 

tablished iterative method, the solution of stiffness matrix equations des- 

(2 0) 

cribing three- dimensional lattice r epre sentation is  considered po s sible. 

An iterative method by Young, successive over-relaxation, is ref- 

erenced a s  a possible meansfor solving Eq. 19. (22' 23)  The successive 

over-relaxation method developed by Young i s  described by the iterative 

relationship in Eq. 20. 

In t e rms  of the matrices of the stiffness matrix equation, Eq. 19, 

the various matrices in the above equations are defined as follows. 

The vector x ( i + l )  i s  the deflection vector for the (i+1) iteration. 

The vector x ( ~ )  is  the deflection vector for the (i) iteration. 
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The matrices L, U, e a r e  most easily and clearly defined as fol- 

lows. Let the stiffness matrix S be expressed a s  the sum of two ma- 

t r ices  D and C. 

S = D-C 

where D is the diagonal matrix 

having zero elements on i t s  main diagonal. The L and U matrices 

a re  given by the matrix equation 

A,, + and C i s  a square matrix 

L t U = D-'C 

where L i s  a lower triangular matrix and U is a uppertriangular ma- 

trix. The vector e i s  defined by the matrix equation 

-1 e = D f  

The range of the iteration factor w i s  from 1 to 2. If w is 

equal to 1, the successive over-relaxation method of Eq. 20 will be 

equivalent to the Gauss-Side11 niethod. 

Theoretical procedures a re  available for computing the optimum 

value of w for special types of matrices. Kahan states that the succes- 

sive over-relaxation method can be employed with satisfactory results for 

matrices that are more general in nature ( 8 ) .  Procedures for calculating 

w are reviewed in  a text by Varga'''). 

lating w involve considerable computation in  themselves and apply to par- 

ticular types of matrices, the procedure of using judgment and exper- 

ience in  selecting an over-relaxation factor is used in many cases.  

Since these procedures for calcu- 



If the node movements a r e  consistently ordered and the technique 

of diagonal subscripting i s  utilized during the generation of the s t i f f -  

ness matrix S the successive over-relaxation method for solving the 

stiffness matrix Eq. 19 can be programmed with efficiency and should 

be relatively straight forward. 

Another possible means of improving the capacity and efficiency 

of the method is to make full  use of the symmetric property of the 

stiffness matrix S in the generation and solution of Eq. 19. 

Another iterative method referenced a s  a possible method of so- 

lution of Eq. 19 i s  the Peaceman-Rachford iterative method, an alter-  

nating -direction implicit iterative method. (I3’  3 ,  This method of so- 

lution also involves obtaining iterative parameters.  Methods for 

approximating these parameters a re  reviewed by Varga. (19) 



CHAPTER FIVE 

CONCLUSION 

1. The lattice analogy technique is  a powerful aralytical tool for 

two-dimensional s t ress  problems involving homogeneous linear mediums. 

2. Computer t imes required for solutions of two-dimensional prob- 

lems a r e  quite acceptable fo r  linear problems. 

3 .  The preparation of input data for a lattice solution is a simple 

and straightforward task. 

4. The ability of the lattice analogy to consider random boundary 

conditions and to approximate irregularly $-aped bodies is  a major advantage 

of this technique. 

5. The procedure developed for solving two-dimensional s t r e s s  

problems involving nonhomogeneous linear mediums is useful and can 

be employed to obtain approximate solutions to some problems; however, 

additional study i s  needed on mesh-size requirements for nonhomogeneous 

m ateri  a1 s . 

6 .  The procedure for solving two-dimensional s t ress  problems 

involving 

solution where there  is  little variation in material properties. However, 

additional study of the effects of material nonhomogeneity and nonuniform 

s t r e s s  distributions will be required before the method can become a 

useful tool for solving nonlinear s t ress  problems. 

solution is considered to be in an embryonic state of development at 

the present time. 

nodinear mediums has been shown to converge to a correct  

The method of 

7 9  
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7 .  The extension of the lattice techniques to the solution of three- 

The tech- dimensional stress problem s i s  relatively straightforward. 

nique can be made into a useful tool when the ability is developed to solve 

large systems of linear simultaneous equations. 



CHAPTER SIX 

RECOMMENDATIONS 

This chapter will enumerate the recommendations made in the pre- 

ceding chapters. 

which they should be acted upon in  the continuation of this study. 

The recommendations a re  presented in the order in 

1. A comprehensive evaluation of the various lattice and plate 

analogies should be made. 

used in  future studies. 

The most advantageous analogies should be 

2. Improvements in the capacity of the computer program, BODY 2, 

should be made. 

solve larger systems of simultaneous equations. 

recommendations regarding these improvements a re  given in Chap. 

4. 

This wi l l  mainly involve improving the ability to 

Several detailed 

3 .  Studies should be made to understand the effects of material 

nonhomogeneity and nonuniform stress  distribution. 

the effects of material inhomogeneity and s t r e s s  nonuniformity on 

fineness of grid requirements should be studied. Chapter 3 discusses 

this problem. 

In particular, 

4. A literature survey should be made to obtain s t ress-s t ra in  

expressions or  data a s  depicted in  Fig. 15b. 

fication of the method of solution, experimental s t ress-  strain data 

should be obtained for a convenient nonlinear material. Simple load- 

ing tes t s  on bodies of this material could be made and the results com- 

pared with the analytical results obtained by lattice analogy solutions 

For experimental veri- 

81 
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of the same problems. 

5. Studies should be made to understand better the convergent 

characterist ics of the proposed method for solution of nonlinear s t ress  

problems. Convergent cr i ter ia  should be studied. Computational pro- 

cedures to aid in convergence should be developed. 

6 .  An awareness should be maintained in regard to the ability 

to solve large systems of simultaneous equations. 

ability is achieved, the lattice analogy technique should be extended 

to solve three-dimensional s t ress  problems in linear mediums. 

Whenever the 
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APPENDIX I 

DETAILS OF A SIMPLY CONNECTED LATTICE ANALOGY 

FOR TWO-DIMENSIONAL STRESS PROBLEMS 
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APPENDIX I 

As stated in the text, the technique for solving s t r e s s  problems in 

a continuous body by a lattice analogy involves the generation and solu- 

tion of a system of equations which describe the lattice representation 

of the continuous body. 

cients used in  the stiffness matrix equation, Eq. 19. The simply 

connected lattice cells for plane stress and plane strain, F i g s .  1 and 

3 respectively, a r e  geometrically identical, but the individual structural 

elements A, A,, A, a re  defined differently. Hence, the stiffness 

coefficients depend on the particular s t r e s s  condition. 

results from the writing of two equilibrium equations, Eq. 16, about 

each node point. 

below. 

b e de scribed following the definition of the various stiffness coefficients. 

Appendix I wi l l  define the stiffness coeffi- 

Equation 19 

These stiffness coefficients in Eq. 16 will be defined 

A computer program BODY 2 based on the lattice analogy will  

Stiffness Coefficients 

The stiffness coefficients 

be defined in this section both 

listed in Fig. 6 and used in  Eq. 16 will  

for plane s t ress  and plane strain 

lattice cells. 

stiffness coefficients i s  shown in Fig. 23. 

of the lattice cell i s  deflected by the amunt A 

the unit force F in the vertical member on the right side of the cell. 

A convenient way to develop the definitions of the various 

The right top corner node 

such that there i s  

84 
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a 

LATTICE CELL i 

t 
F 

- A  

t =  THICKNESS OF 
LATTICE CELL 

FIGURE 2 3  DERIVATION OF STIFFNESS COEFFICIENTS FOR PLANE STRESS 
OR PLANE STRAIN LATTICE CELLS, SIMPLY CONNECTED 



By frame analysis, the resulting forces in the outer diagonal members 

due to the deflection A can be readily obtained. It i s  convenient to 

define these forces in terms of their horizontal and vertical components 

FP and FA. For the plane s t ress  lattice cell, the resulting values of 

FP and FA due to the translation A are 

1 (ltv) AE A .m a F A  = 

A .  1 (3~-1) F P =  - 4 '0 a 

For  the plane strain lattice cell, the resulting values of FP and 

FA due to the translation A are 

! 

= A  
1 

4(1-2~) a F A  = 

A .  
(4~-1) AE 

4( 1-2~) a FP = 

Three general stiffness coefficients for the lattice cell a r e  defined 

using the above expression for horizontal and vertical forces resulting 

from a deflection of a node point. 

For the plane s t ress  lattice cell the three stiffness coefficients 

a r e  

AE 
a S A =  - 
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AE 
= 4(1-v) a 

( 3 ~ - 1 )  AE 
= 4(1-2v) a 

For  the plane. strain lattice cell the three stiffness coefficients a r e  

AE 
a S A =  - 

AE - 1 
= 4(1-2v) a 

These three stiffness coefficients for each lattice cell a r e  used to 

define the various stiffness coefficients listed in Fig. 6 and used in  the 

two equilibrium equations, Eq. 16. 

with slight modifications, Fig. 24. The three stiffness coefficients SA, 

SAFA,SAFP completely describe the stiffness of each lattice cell. 

the development of the general stiffness matrix equation, Eq. 19, the two 

equilibrium equations about each interior node were first  written in  t e r m s  

of these three stiffness coefficients. 

F o r  convenience Fig .  6 i s  redrawn here 

In 

Because of the reoccurring combina- 

i tions of these stiffness coefficients, it  was advantageous to define an 

I alternate set of stiffness coefficients, these being listed in Fig. 6 and used 

in Eqs. 16a and 1Bb. These various stiffness coefficients a r e  defined below. 



88 

A 

N 
B z + z 
N 

x, - 
I 

I 

> 

X 



ss w 
SNW 

SNE 

SSE 

sw1 
s w 2  

s w 3  

SNl 

SN2 

SN3 

SE1 

SE2  

SE3 

ss1 

s s 2  

s s 3  

= SAFA,, 

= SAFA, 

= S A F h ,  

= SAFA,, 

= SAFP, .f SAFP,, +SA, t SA,,, 

= -SAFP, 4- SAFP,, 

= - SAFP,, - SAFP,, 

= SAFP,, -t SAFP,, + SA, t SA,, 

= SAFP,, - SAFP,, 
= SAFP,, - SAFP,,, 
= SAFP,, f SAFP,, + SA,, + SA,, 

= -SAFP,, + SAFP,, 

= -SAFP, - SAFP,, 

= SAFP,, f SAFP, + SA,, + SA,, 
= SAFP,, - SAFP,, 
= -SAFP, - SAFP,, 

SCENZ = -(SAFA,, + S A F k ,  + SAFA,, t SAFA,, t SA,,,+ SA,, 

+ SA,, 

SCEN2 = SAFA,,, - SAFA,, + SAFA,. - SAFA,, 

, Computer Program 

The computer program described here  is based on the simply connected 

latt ice ce l l s  shown in  Figs.  1 and 3. 

dimensional s t r e s s  problems in linear o r  nonlinear mediums. 

program is written in  FORTRAN - 60 language, the comment ca rds  in  the 

program itself plus a general  flow diagram a r e  considered a sufficient 

description. The general  flow diagram is shown i n  Fig. 25. 

The program BODY 2 will solve two- 

Since the 
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GENERAL FLOW DIAGRAM OF BODY 2 PROGRAM 
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I 

IN:  NPROBS. ITER; ITRCEL( 1,2,3,4,5 );IFNUM ; 
IXNUM. ITRMOV( 1,2,3,4,5); ITYPE. 
BWIDTH ; BLENGTH ; CELLEN ;CELTICK; 
EASUMD; VASUMD ; CLOSTOL. 

SET:  E ( I )  AND V(1) = EASUMD AND VASUMD FOR FIRST ITERATION 

1 

FIGURE 2 5  GENERAL FLOW DIAGRAM FOR BODY 2 PROGRAM 



. 

PRINT OUT ITERATION DATA: MONITORED NODE MOVEMENTS 
MONl TORED STRAINS VALUES - 

92 

CLOSURE , NODE MOVEMENTS, STATES 
OF STRESS AND STRAIN AT EACH 
LATTICE CELL IN TERMS OF 
PRINCIPAL AND X -  Y VALUES 

/ ENTER ITERATION LOOP 

t 
~~ 

COMPUTE : STIFFNESSES SA([) ; SAFA(1) ; SAFP(I1 FOR EACH 
LATTICE CELL BASED ON E ( I )  AND V( I )  VALUES 

t 
SET: SET ALL S(1.J) ELEMENTS EQUAL TO ZERO 

SET ALL F ( I )  ELEMENTS EQUAL TO F F ( I 1  
c 

I 

COMPUTE: STATE OF STRESS AT EACH LATTICE CELL FROM STATE 
OF STRESS VERSUS STATE OF STRAIN RELATIONSHIP 

4 
1 

COMPUTE PSEUDO ELASTIC CONSTANTS E ( I )  
AND V ( I )  FOR EACH LATTICE CELL 

CLOSURE NOT CLOSURE 
MOVEMENTS SATISFIED 

ITERATIONS 

t 

CLOSURE 
SATISFIED ' 

FLOW DIAGRAM FOR BODY 2 (CONT'D) 



LISTING OF BODY 2 PROGRAM 
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C- 
C 
C 
C 
C 
C -  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

~ 

S M I T H  ROE. PROGRAM BODY 2 GENERAL S I M P L Y  CONNECTE3 L A I T I C Z  i4PIi)DEL. 
PROGRAM BODY 2 
D I M E N S I O N  S ( 2 3 4 , 4 3 ) , X ( 2 3 4 ) , F ( 2 3 4 ) v F F ( Z ~ 4 ~ , F S P C ! 2 3 4 } ~ I F S P C ~ 7 ~ 4 ~ ,  

1 I X S P C ( 2 3 4 ) , S A ( 9 6  ) , S A F A ( 9 6  ) , S A F P ( 9 6  S,E(96 t v V ( 9 6  1 9  

2 S T R E S S l ( 9 6  ) , S T R E S S 2 ( 9 6  ) , S T R E S S X ( 9 6  ) , S T R E S S Y ( 9 h  1 9  

3 S T R E S X Y ( 9 6  ) , S T R A I N 1 1 9 6  ) , S T R A I N 2 ( 9 6  1 9 S T R A I N X f 9 6  ! *  
4 S T R A I N Y ( 9 6  ) ,STRANXY(96  ) , T H E T A ( 9 6  ) , X P R E V U S ( 5 ) , R U N ( l O )  

COMMON S 
---- BODY 2 PROGRAM WILL SOLVE PROBLEMS OF PLANE STRESS OR PLANE S T R A I N  

U S I N G  THE S I M P L Y  CONNECTED L A T T I C E  CELLS OF HRENNIKOFF AND SMITH. 
THE MEDIUM MAY BE L I N E A R  OR NONLINEAR. M A T E R I A L  PROPERTIES NECES- 
SARY FOR A SOLUTION ARE THE R E L A T I O N S H I P  OF THE STATES O F  STRESS 
TO STATES OF STRAIN.  

-NOTE-- IT  I S  USUALLY NECESSARY T O  ALTER D I M E N S I O N  STATEMENT FOR EACH 
PROBLEM 

NOTATIONS 

I N P U T  DATA 

- NPROBS - 
I T E R  - - 

ITRCEL1- -5  = 

- I F N U M  - 
- I XNUM - 

ITRMOV1--5 = 

- I T Y P E  

- BWIDTH - 
BLENGTH - 
CELLEN 
C E L T I C K  ." 
EASUMD - 

- 
- 
- 
- 

- VASUMD - 
- CLOSTOL - 

I FSPC - - 

F S P C S I S P C )  = 
I XSPC - - 

NUMBER OF STRESS PROBLEMS T O  BE SOLVED. 
MAXIMUM NUMBER OF I T E R A T I O N S  ALLOWED FOR CLOSURE 
I N  NONLINEAR STRESS PROBLEMS. 
MONITORED L A T T I C E  CELLS DURING I T E R A T I O N .  THE STATE 
OF S T R A I N  AT EACH MONITORED C E L L  I S  P R I N T E D  AFTER 

TOTAL NUMBER OF S P E C I F I E D  NODE MOVEMENTS OK NCDE 

TOTAL NUMBER OF S P E C I F I E D  NODE MOVEbiENTS. 

EACH ITERATION.  

LOADS. 

MONITORED NODE MOVEMENTS DURING I T E R A T I O N .  A L S O  
THESE MOVEMENTS ARE USED I N  CLOSURE TEST. 
S P E C I F I C A T I O N  OF STRESS CONDITION-- -FOR PLAlLE STRESS 
I T Y P E  = 0 FOR PLANE S T R A I N  I T Y P E  = NOKZERO. 
WIDTH OF RECTANGULAR BODY. 
LENGTH OF RECTANGULAR BODY 
S I D E  D I M E N S I O N  OF THE L A T T I C E  CELL.  
THICKNESS OF THE L A T T I C E  CELL. 
THE E L A S T I C  CONSTANT E ASSUMED FOR THE F I R S T  I T E R -  
ATION. 
THE E L A S T I C  CONSTANT V ASSUMED FOR THE F I R S T  I T E R -  
ATION. 
CLOSURE TORERANCE FOR NODE MOVEMENTS ITRMOV1--5o  
INDEX OF S P E C I F I E D  NODE MOVEMENTS OR LOADS. I N D E X I K G  
SHOULD i3E RIGHTLY ORDERED THAT I S  2467 ROT 2746 
VALUES OF S P E C I F I E D  NODE LOADS OR MOVEMEMTS. 
INDEX O F  S P E C I F I E D  NODE MOVEMENTS. 
NOTE---NUMBER OF I F S P C  OR FSPC = IFNUY.  

NUMBER OF I X S P C  IXNUM. 

A D D I T I O N A L  NOTATIONS 

NODEW I D  = NUMBER O F  NODE P O I N T S  I N  THE WIDTH OF THE BODY 

NODELEN = NUMBER OF NODE P O I N T S  I N  THE LENGTH OF THE BODY 
NODEWID = ( B W I D T H I C E L L E N )  + l o  

NODELEN = (BLENGTH/CELLEN)  + l o  



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 

NEQUAS 

NTWID 

S A (  I) 
S A F A (  I) 
SAFP( I) 
S ( I , J )  
X ( 1 )  
F ( 1 )  
E ( 1 )  

STRESS1 (I 1 
S T R E S S 2 ( I )  
THETA( I) 

S T R A I N l ( 1 )  
S T R A I N Z ( 1 )  
S T R E S S X ( 1 )  
STRESSY ( I) 
STRESXY(1 )  
S T R A I N X ( 1 )  
S T R A I N Y (  I) 
STRANXY ( I) 

95 

NUMBER OF EQUATIONS I N  THE M A T R I X  EQUATION SX=Fo 
NEQUAS = NODEWI D*NODELEN*2 
TOTAL WIDTH OF BAND OF NONZERO ELEMENTS I N  THE 
ST IFFNESS MATRIX S o  NTWID= 4*NODEWID+ 70 
THE THREE MAIN S T I F F N E S S  COEFFIC IENTS FOR EACH 
C E L L ( 1 ) .  USED TO DEFINE THE VARIOUS S T I F F N E S S  
COEFFIC IENTS I N  THE ST IFFNESS M A T R I X  S ( I , J )  
ST IFFNESS ELEMENTS I N  THE S T I F F N E S S  MATRIX S o  
ELEMENTS I N  THE MOVEMENT VECTOR X o  
ELEMENTS I N  THE LOAD VECTOR F. 
THE E L A S T I C  CONSTANT E ---ASSUMED FOR F I R S T  I T E R A T I O N  
---- PSEUDO VALUE FOR EACH CELL  ON EACH ITERATION. 
THE E L A S T I C  CONSTANT V--- ASSUMED FOR F I R S T  I T E R A T I O N  
---- PSEUDO VALUE FOR EACH CELL ON EACH ITERATION. 
NORMAL MAXIMUM P R I N C I P A L  STRESS FOR C E L L ( 1 ) .  
NORMAL MINIMUM P R I N C I P A L  STRESS FOR C E L L ( 1 ) .  
ANGLE FROM THE STRESS1 D IRECTION TO THE X-DIRECTION 
FOR C E C L ( 1 ) o  CCW I S  + 
MAXIMUM EXTENSION STRAIN FOR C E L L ( 1 )  
MINIMUM EXTENSION S T R A I N  FOR C E L L ( 1 )  

STRESS AND STRAIN COMPONENTS I N  THE X-Y D IRECTIONS 
FOR C E L L (  1). 
STRESXY AND STRANXY ARE SHEAR COMPONENTS. 

OUTPUT INFORMATION 

MONITORED NODE MOVEMENTS =X(ITRMOV1---5) 
MONITORED STRAINS =STRAINl(ITRCEL1---5~~STRAIN2(1TRCELl--5) 

F I N A L  SOLUTION OF PROBLEM CONSISTING O F  THE BELOW INFORMATION 
THETA(ITRCEL1-- -5)  

NODE MOVEMENTS X (  110 
STATE OF S T R A I N  AT EACH 
STRA I NSo 
STATE OF STRESS A T  EACH 
STRESSES. 

1 FORMAT ( 1 H 1 )  
2 FORMAT ( 1 0 A 8  1 
3 FORMAT ( 4 ( 1 1 0 , 1 P E 1 0 . 3 ) )  
4 F O R M A T  ( 1 6 1 5 1  
5 FORMAT ( l P 8 E 1 0 . 3 )  
6 FORMAT ( l X p l O A 8 P  

2 0  FORMAT 
2 1  FORMAT 
2 2  F O R M A T  
23 FORMAT 
24 FORMAT 
2 5  F O R M A T  
26 FORMAT 
2 7  FORMAT 
2 8  FORMAT 
29 FORMAT 

( / /  2 0 H  
4 4 1 H  
( 3 1 H  

4 6 H  
( 4 6 H  
( 3 8 H  
( 3 9 H  
( +3H 
( 3 0 H  
4 4 2 H  

L A T T I C E  CELL X-Y COMPONENTS AND P R I N C I P A L  

L A T T I C E  CELL X-Y COMPONENTS AND P R I N C I P A L  

INPUT D A T A / / )  
MAXIMUM NUMBER O F  ITERATIONS = I 5  / I  
MONITORED CELLS ARE 5 1 5  / I  
NUMBER O F  F ( I 9  ELEMENTS S P E C I F I E D  = 1 5 1 )  
NUMBER OF NODE MOVEMENTS S P E C I F I E D  = I 5 / )  
WIDTH OF RECTANGULAR BODY = 1PE10 .3 / )  
LENGTH O F  RECTANGULAR BODY = l P E 1 0 0 3 / )  
S I D E  D IMENSION OF L A T T I C E  C E L L  = 1 P E l O o 3 / )  
THICKNESS OF BODY .= lPE10 .3 /  1 
MODULUS OF E L A S T I C I T Y  ASSUMED = l P E 1 0 0 3 / )  
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30  FORMAT ( 35H POISSONS R A T I O  ASSUMED = l P E 1 0 0 3 /  I 
3 1  FORMAT ( / /  6 0 H  P R I N T  OUT OF S P E C I F I E D  LOADS OR MOVEMENTS 

32 FORMAT ( /  58H LOAD MOVEMENT 

33 FORMAT ( 1 1 X  9 I 5  9 34X 9 lPE10.3 1 
34 FORMAT ( 3 3 X , I 5 , 1 2 X 9 1 P E l Q 0 3 )  
35 FORMAT ( 4 1 H  MONITORED NODE MOVEMENTS ARE 5 1 5 / )  
36 FORMAT ( / /  2 5 H  ITERATION DATA 1 
37 FORMAT ( I /  26H ITERATION NUMBER I 5  / / I  
38 FORMAT ( 3 9 H  TABLE OF MONITORED MOVEMENTS / I  
3 9  FORMAT 3 6 H  MOVEMENT VALUE 1 
40 FORMAT (13X,15,7X,lPE15.8) 
41 FORMAT ( / /  37H TABLE OF MONITORED STRAINS / I  

1 A T  NODES 1 

1 VALUE / / I  

4 2  FORMAT ( 7 6 H  CELL NUMBER MAX. STRAIN MINm 
l S T R A I N  THETA 1 

43 FORMAT ( 1 3 X ~ I 5 ~ 7 X ~ l P E 1 5 o 8 ~ 5 X ~ l P E 1 5 o 8 ~ 5 X ~ l P E l 5 0 8 ~  
47 FORMAT ( 5 9 H  CLOSURE TOLERANCE FOR MONITORED NODE MOVE14 

l E N T S  = lPE10.3 / I  
5 0 0  FORMAT ( /  2 1 H  OUTPUT DATA / / 9  
5 0 1  FORMAT ( 6 3 H  SOLUTION CLOSED W I T H I N  TOLERANCE AT ITERAT 

5 0 2  FORMAT ( 6 6 H  SOLUTION D I D  NOT CLOSE AFTER S P E C I F I E D  I T E  

5 0 3  FORMAT ( /  3 3 H  TABLE OF NODE MOVEMENTS / I  
5 0 4  FORMAT ( / / 5 2 H  TABLE FOR THE STATE OF S T R A I N  AT EACH CELL  

505 FORMAT ( / / 5 2 H  TABLE FOR THE STATE OF STRESS AT EACH CELL 

l I O N  NUMBER I 5  1 )  

l R A T I O N  NUMBER I 5  / I  

1 / I  

1 / I  

l S T R E S S  THETA 1 

1 R  EACH CELL  / I  

l A I N Y  STRANXY 1 

10R EACH CELL  / )  

l E S S Y  STRESXY I 

5 0 6  FORMAT 7 6 H  CELL NUMBER MAX. STRESS MINm 

5 0 7  FORMAT ( / /  64H TABLE ~ ~ i i  STRAINS I N  THE x - Y  D I R E C T I O N S  F?  

508 FORMAT ( 7 7 H  CELL NUMBER S T R A I N X  SI-[; 

5 0 9  FORMAT ( / /  6 5 H  TABLE FOR STRESSES I N  THE X - Y  D IRECTIONS F 

5 1 0  F O R M A T  ( 7 7 H  CELL NUMBER STRESSX STR 

C A L L  TIME 1HP 1 
READ 4,NPROBS 

DO 9999 NPROB = 1,NPROBS 
READ 2, ( R U N ( I 1 ,  I = 1, 10) 
READ 4 9  ITER,  I T R C E L l r  ITRCEL2, ITRCEL3 ,  ITRCEL4 ,  ITRCELS, IFNUM, 

READ 49 ITRMOVl,ITRMOV2, ITRMOV3, ITRMOV4, ITRMOV5r I T Y P E  
READ 5, BWIDTH, BLENGTH, CELLEN, CELTICK,  EASUMD, VASUMD, CLOSTOL 

L IXNUM 

c----- COMPUTATION OF VARIOUS INDEXS T O  BE USED THROUGHOUT PROGRAM. 
BWID = IBWIDTH/CELLEN)  + 100 
BLEN = (BLENGTH/CELLEN) + 100 
NODEW I D  = BWID 
NODELEN = BLEN 
NEQUAS = NODEW ID*NODELEN*2 
NTWID = NODEW I D * 4  + 7 
NWIDTH = ( N T W I D - 1 ) / 2  
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MD = NWIDTH + 1 
NQMW I D = NEQUAS - NWIDTH 
NCELLS = (NODEWID - l ) * (NODELEN - 1 )  
NLENM 1 = (NODELEN - 1 )  
NWIDML = (NODEWID - 1 1  
DENOM = CELLEN*2rO 
NWIDPL = NODEWID + 1 
NW2 = 2*NODEWID 
READ 39 ( I F S P C ( I ) *  F S P C ( 1 ) r  I = 1 r IFNUM)  
READ 41 I I X S P C ( I ) ,  I = 1sIXNUM) 

PRINT 1 
PRINT 6, ( R U N ( I ) t I = l t l O )  
PRINT 20 
PRINT 211 ITER 
PRINT 2 2 1  ITRCELl,ITRCELZ~ITRCEL3~1TRCEL4~1TRCEL5 
PRINT 3 5 1  I T R M O V 1 ~ I T R M O V 2 ~ I T R M O V 3 ~ l T R M O V 4 ~ I T R M O V 5  
PRINT 23, IFNUM 
PRINT 2 4 1  IXNUM 
PRINT 259 BWIDTH 
PRINT 26, BLENGTH 
PRINT 27, CELLEN 
PRINT 2 8 1  CELTICK 
PRINT 2 9 1  EASUMD 
PRINT 30, VASUMD 
PRINT 479 CLOSTOL 

FF( I) = 0.0 

C----- PRINT OUT OF INPUT INFORMATION. 

DO 5 5 6  I= l rNEQUAS 

5 5 6  CONTINU& 
J = €  

C----- SETTING LOAD VECTOR F ( 1 )  TO SPECIFIED CONDITIONS AND PRINTING OUT 
C NODE MOVEMENTS AND LOADS WHICH WERE SPECIFIED. 

DO 5 5 0  I = 1,IFNUM 
I F (  IXSPC(  J )  - I F S P C ( 1  I ]  5 5 4 9 5 5 5 9 5 5 4  

5 5 4  I F F  = I F S P C ( 1 )  
F F ( I F F )  = -FSPC( I 1 

GO TO 55Q 
5 5 5  I X X  = IXSPCt J )  

F F ( X X X )  = FSPC(1 )  
J = Ji.1 

5 5 0  CONTINUE 
PRINT 3 1  
PRINT 32  
J = l  

I F  ( I X S P C (  J I  - IFSPCt  1 1  1 552,553,552 
5 5 2  I F F  = I F S P C ( 1 )  

FFF = - F F ( I F F I  
PRINT 339 I F F 1 F F F  

DO 5 5 1  I = 1,IFNUM 

GO TO 5 5 1  
5 5 3  I X X  = I X S P C ( J 1  

PRINT 34, I X X ,  F F ( I X X )  
J = J + 1  

C A L L  TIME i LHP 1 
5 5 1  CONTINUE 
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c ----- S E T T I N G  THE E L A S T I C  CONSTANTS E AND V TO THE ASSUMED VALUES 
C EASUMD AND VASUMD FOR F I R S T  I T E R A T I O N  

DO 201 I = 1,NCELLS 
E ( I 1  = EASUMD 
V ( 1 )  = VASUMD 

KOUNTER = 0 
2 0 1  CONTINUE 

C----- B E G I N N I N G  OF I T E R A T I O N  CYCLE 
DO 9 9 9  I T  = 1 , I T E R  

I TERNUM = I T  
c----- COMPUTION OF THE THREE M A I N  S T I F F N E S S  C O E F F I € I E N T S  FOR EACH 
C L A T T I C E  C E L L  

c----- L O G I C  TO S P E C I F Y  PLANE STRESS OR PLANE S T R A I N  PROBLEM I T Y P E  = 0 
C FOR PLANE STRESS I T Y P E  = ANY INTERGER FOR P L A N E  S T R A I N  

C----- DO LOOP 197 f O R  P L A N E  S T R A I N  PROBLEMS 

CLT = CELLEN*CELTICK 

I F  ( I T Y P E I  1 9 6 , 1 9 8 + 1 9 6  

196 DO 197 I = 1,NCELLS 
A = C L T / (  ( l .O+V(  I )  ) * Z O O )  
F A  Q 1 m  0 )  / ( 100-2.0*V ( I I )*0.25 
F P  = ~ ~ 4 o O * V ~ I ~ ~ 1 o O ~ / ~ 1 . O ~ 2 m O * V ~ I ~ ~ ~ * O o 2 5  
S A ( I  1 = ( A * E ( I ) ) / C E L L E N  
SAFA ( I) = FA*SA(  I) 
SAFP ( I 1  = F P + S A ( I )  

GO TO 199 
197 CONTINUE 

C----- DO LOOP 200 FOR P L A N E  STRESS PROBLEM 
198 DO 200 I = 1,NCELLS 

A = C L T / ( ( l m O  + V ( I ) ) * 2 . 0 )  
FA = ~ ~ V ~ 1 1 + 1 . 0 ~ / ~ 1 . 0 - V ~ 1 ~ ~ ~ * 0 . 2 5  
F P  = ((3mO*V(I)-1oO)/(loO-V(I)))*Om25 
S A d I  1 = ( A * E ( I I ) / C E L L E N  
S A F A (  I) = FA*  S A ( 1 )  
S A F P (  I 1  = FP  * S A ( I I )  

200 CONTINUE 

199 DO 2 0 2  I = 1,NEQUAS 
c----- GENERATION OF THE S T I F F N E S S  MATRIX  S AND THE LOAD VECTOR F 

DO 202 J = 1,NTWID 
S (  I 9 J )  = O m 0  

202 CONTINUE 
DO 2 0 3  1 = l r N E Q U A S  

F ( I )  = F F (  I 1  
2 0 3  CONTINUE 

c----- COMPUTING S T I F F N E S S  ELEMENTS FOR F I R S T  NODE --THAT I S  F I R S T  CORNER 
C NODE 

N = 1  
I 1  = 2*N - 1 
I 2  = I1+1 
ssw = 0.0 
SNW = 0.0 
SSE = 0.0 
sw1 = 0.0 
sw2 = 0.0 
sw3 = O m 0  
ss1 = 0.0 
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SS2 = 0.0 
5 5 3  = 0.0 
SNE = S A F A ( N )  
S N 1  = S A F P ( N I + S A ( N )  
SN2 = - S A F P ( N )  
SN3 = - S A F P ( N I  

SE2  = -SAFP(N) 
SE3  .= - S A F P ( N )  
SCEN 1 = - ( S A F A ( N ) + S A ( N )  1 
SCEN2 = -SAFA(NI  
C A L L  SMATRIX (SSW,SNW~SNE~SSE,SW~~SW~,SW~,SN~,SN~~SNZSN~~SE~~SEZ~SE~ 

S E 1  = S A F P I N I + S A ( N )  

1 ~ S S l , S S 2 ~ S S 3 r S C E N l ~ S C E N 2 , I l r I 2 , M D , N W 2 )  
c----- COMPUTING STIFFNESS ELEMENTS FOR NODES ON F I R S T  COLUMN EXCLUDING 
C THE CORNER NODES 

DO 2 0 4  N 2 9  NWIDMl 
I 1  = 2*N - 1 
I 2  = I1+1 
SSE = S A F A I N - 1 )  
SNE = S A F A I N ?  
S N 1  = S A F P I N ) + S A [ N l  
SN2 = - S A F P ( N )  
SN3 = - S A F P ( N )  
S E I  = S A F P ~ N ) + S A F P ( N - l ) + S A ( N ) + S A ( N - l )  
SE2  = =SAFP N)+SAFP ( N - 1 )  
SE3 = - S A F P ( N ) - S A F P ( N - l )  
ss1 = S A F P ( N - l ) + S A ( N - l )  
5 5 2  = - S A F P ( N - l )  
553 - S A F P ( N - 1 )  
S C E N l  = - S S A F A ( N ) + S A F A I N - l l  

1 + SA(NP+ S A ( N - 1 ) )  
SCEN2 -SAFA N1 +SAFA ( N - 1 1  
C A L L  SMATRIX [SSW,SNW,SNE,SSE,SW~,SW~,SW~~SW~,SN~~SN~~SN~~SE~~SEZ~SE~ 

1 9 SS1, SS29 S S 3 9  SCENl9SCEN2, I 1  9 I 2  9MD9NW2 1 
2 0 4  CONTINUE 

c----- COMPUTING STIFFNESS ELEMENTS FOR TOP NODE OF F I R S T  COLUMN 
N = NODEWID 
I 1  = 2*N - 1 
1 2  = I1+1 
SNE = 0.0 
SN 1 = 0.0 
SN2 = 0.0 
SN3 = 0.0 
SSE = SAFA(N-1 )  
S E l  = SAF P t N -11  +SA N - 1 1  
SE2 = S A F P t N - 1 )  
SE3 - S A F P ( N - l )  
ss 1 -p SAFP N-1  ) + S A  ( N - 1  I 

5 5 3  = - S A F P ( N - l )  
SCEN 1 z - Q S A F A I N - 1 ) + S A ( N - l )  1 
SCEN2 = SAFA(N-1 )  
C A L L  S M 4 T R I X  ISSW?SNW,SNE,SSE,SW1,SW2,SW3,SNl9SNSN39SEl9SE~9SE3 

ss2 = -SAFP(N-15 

1 9 S S 1 9 S S 2 r S S 3 r S C E N l r S C E N 2 r l l , I 2 , M D , N W 2 )  
c----- COMPUTING STIFFNESS ELEMENTS FOR NODE OF INTERIOR COLUMNS 
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NBOT = N W I D P l  
INW = NODEWID 
ISW = NODEWID + 1 
I N E  = 1  
I SE = 2  

C----- BOTTOM NODE INTERIOR COLUMNS 
DO 2 0 5  NCOLUMN = 2rNLENM1 

N = NBOT 
I1 = 2*N-1 
12 = I1+1 
SSE = 0 0 0  
ssw = 000 
ss1 = 0.0 
552 = 000 
5 5 3  = 0.0 
SNW = SAFA(N-INW) 
SNE zc SAFA ( N - I  NE 1 
sw1 = SAFP(N-INW)+SA(N-INW) 
sw2 = -SAFP ( N - I  NW) 
s w 3  = -SAFP(N-INW) 
SN 1 = SAFP(N-INW)+SAFP(N-INE)+SA(N-INW)+SA(N-INE) 
SN2 SAFP ( N - I  NW 1-SAFP ( N - I  NE ) 
SN3 = -SAFP(N-INW)-SAFP(N-INE) 
S E l  = SAFP(N- INE)+SA(N- INE)  
SE2 = -SAFP(N- INE)  
SE3  = -SAFP ( N - I  NE 1 
SCEN 1 =-(SAFA(N-INW)+SAFA(N-INE) 

1 + SA(N-INW)+ S A ( N - I N E ) )  
SCEN2 SAFA(N-INW)-SAFA(N-INE) 
C A L L  SMATRIX (SSW~SNW,SNE,SSE,SW~,SW~,SW~~SW~~SN~~SN~~SN~~SE~~SE~~SE~ 

= 

1 rSSlrSS2tSS3,SCEN1,SCEN2rIlrI2rMDrNW2) 
C----- INTERIOR NODES INTERIOR COLUMNS 

NBOTP 1 = NBOT + 1 
NTOPMl = NBOT + NODEWID - 2 

1 1  = 2*N-1 
I 2  = I1+1 
ssw = SAFA ( N - I  SW 1 
SNW = SAFA(N-INW) 
SNE = SAFA ( N - I  NE 1 
SSE = SAFA ( N - I  SE 1 
sw1 = SAFP(N-INW)+SAFP(N-ISW)+SA(N-INW)+SA(N-ISW) 
s w 2  = -SAFP(N-INW)+SAFP(N-ISW) 
s w 3  = -SAFP(N-INW)-SAFP(N-ISW) 
S N 1  = SAFP(N-INW)+SAFP(N-INE)+SA(N-INW)+SA(N-INE) 
SN2 = SAFP(N-INW)-SAFP(N-INE) 
SN3 = -SAFP(N-INW)-SAFP(N-INE) 

SE2 = -SAFP(N-INE)+SAFP(N-ISE) 
SE3 = -SAFP(N-INE)-SAFP(N-ISE) 
ss1 = SAFP(N-ISW)+SAFP(N-ISE)+SA(N-ISW)+SA(N-ISE) 
ss2 SAFP(N-ISW)-SAFP(N-ISE) 
5 5 3  = -SAFPBN-ISW)-SAFP(N-ISE) 
S C E N l  =-(SAFA(N-INW)+SAFA(N-INE)+SAFA(N-ISE)+SAFA(N-ISW) 

1 + SA(N- INW)+  S A ( N - I N E ) +  S A ( N - I S E ) +  S A ( N - I S W ) )  

DO 206 N = NBOTP1,NTOPMl 

S E l  = SAFP(N-INE)+SAFP(N-ISE)+SA(N-INEI+SA(N-ISE) 
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SCEN2 = SAFA(N-INW)-SAFA(N-INE)+SAFA(N-ISE)-SAFA(N-ISW) 
C A L L  SMATRIX (SSW,SNW,SNE,SSE,SW~,SW~,SW~,SW~,SN~SN~SN~,SE~~SE~~SE~ 

1 ,SSl ,SS2,SS3,SCENlrSCEN2,I l t I2 ,MDINW2) 
206 CONTINUE 

c----- TOP NODE INTERIOR COLUMNS 
N = NBOT + NWIDMl 
I1 = 2*N-1 
I 2  = I1+1 
SNW = 0.0 
SNE = 0.0 
SN 1 = 0.0 
SN2 = 0.0 
SN3 = 0.0 
ssw SAFA(N-ISW) 
SSE = SAFA(N- ISE)  
sw1 = SAFP( N-ISW) +SA(N- I  SW 1 
s w 2  = SAFPfN-ISW) 
s w 3  = -SAFP(N-ISWI 
SE 1 = S A F P ( N - I S E ) + S A ( N - I S E )  
SE2 = SAFP ( N - I  SE 1 
SE3 = -SAFP(N- ISE)  
SSl = SAFP(N-ISW)+SAFP(N-ISE)+SA(N--ISW)+SA~N-ISE) 
ss2 = SAFP( N-ISW 1 -SAFP ( N - I S E  ) 
553 = -SAFP(N-ISW)-SAFP(N-ISE) 
S C E N l  =- (SAFA(N- ISW)+SAFA(N- ISE)  

1 + SA(N- ISW)+  S A ( N - I S E ) )  
SCEN2 = -SAFA(N- ISW)+SAFA(N- ISE)  
CALL SMATSIX (SSW,SNW,SNE,SSE,SW~~SW~,SW~,SW~,SN~SN~SN~*SE~,SE~,SE~ 

L ,SSlrSS2,SS3,SCENl~SCEN2~11~12~MD~NW2) 
NBOT = NBOT + NODEWID 
I NW = INW + 1 
I NE = I N E  + 1 
ISW = ISW + 1 
I S E  = I S E  + 1 

2 0 5  CONTINUE 
c----- COMPUTING STIFFNESS ELEMENTS FOR BOTTOM CORNER NODE LAST COLUMN 

N = NBOT 
I1 2+N - 1 
1 2  = I1+1 
ssw = 0.0 
SSE = 0.0 
SNE = 0.0 
ss1  = 0.0 
5 5 2  = 0.0 
5 5 3  = 0.0 
S E l  = 0.0 
SE2 = 0.0 
SE3  = 0.0 
SNW = SAFA(N-INW) 
sw1 = SAFP N-INW )+SA(N- I  NW 1 
s w 2  = -SAFP ( N - I  NW 1 
s w 3  = -SAFP(N-INWI 
S N 1  = SAFP(N-INW)+SA(N-INW) 
SN2 =: SAFP(N-INW) 
SN3 = -SAFP(N-INW) 
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S C E N l  =-(SAFA(N-INW)+SA(N-INW)) 
SCEN2 = SAFAfN-INW) 
CALL  SMATRIX (SSW,SNW,SNE,SSE,SW~,SW~,SW~~SW~~SN~SN~SN~~SE~~SEZ~SE~ 

1 ,SSl,SS2,SS3~5CENl,SCENZ~Il~IZ~MD~NW2) 
M = N + 1  
N L A S T M l  = NODEWID*NODELEN - 1 

c----- COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES LAST COLUMN 
DO 207 N = M9NLASTM1 

I 1  = 2*N - 1 
I 2  = I1+1 
ssw = SAFA(N-ISW) 
SNW = SAFA(N-INW) 
sw1 = SAFP(N-INW)+SAFP(N-ISW)+SA(N-INW)+SA(N-ISW) 
sw2 = -SAFP(N-INW)+SAFP(N-ISW) 
s w 3  = -SAFP(N-INW)-SAFP(N-ISW) 
SN 1 = SAFPIN-INW)+SktN- INW) 
SN2 = SAFP(N-INW) 
SN3 = -SAFP(N-INW) 
ss 1 = SAFP(N- ISW)+SA(N- ISW)  
s s 2  = SAFP(N-ISWI 
s s 3  = -SAFP t N - I  SW 1 
S C E N l  =-lSAFA6N-INW)+SkFA(N-ISW) 

1 + SA(N- INW)+  S A ( N - I S W ) I  
SCEN2 = SAFA ( N-INW 1 -SAFA N - I  SW 1 
CALL SMATRIX (SSW,SNW,SNE,SSE,SW1,SW2,5W3,SNlrSN19SN2,SN39SEl~SE2,SE3 

1 , S S l , S S 2 , S S 3 9 S C E N l , S C E N 2 t I l r l 2 , M D , N W 2 )  

c----- COMPUTING STIFFNESS ELEMENTS FOR LAST NODE POINT 
207 CONTINUE 

N = NODEWID*NODELEN 
I 1  = 2*N-1 
I 2  = 1 1 + 1  
SNW = 0.0 
SN 1 = 0.0 
SN2 = 0.0 
SN3 = 0.0 
ssw = SAFA c N-ISW 1 
sw1 = SAFP(N-ISW)+SA(N-ISW) 
sw2 = SAFPfN-ISW) 
s w 3  .= -SAFP(N-ISW) 
ss 1 = SAFP(N-ISW)+SA(N-ISWI 
552 SAFP(N-ISW) 
s s 3  = -SAFPIN-ISWI 
SCEN 1 =-(SAFA(N-ISW)+SA(N-ISW)) 
SCEN2 = -SAFA(N-ISWI 
C A L L  SMATRIX ( S S W ~ S N W , S N E , S S E , S W ~ , S W ~ ~ S W ~ ~ S W ~ ~ S N ~ S N ~ S N ~ ~ S E ~ ~ S E ~ ~ S E ~  

1 9 SS 1, SS 29 SS 3 ,SCENl,SCENZ 9 I 1 9  I 2  ,MD 9NW2 1 
c----- END OF THE GENERATION O F  THE GENERAL STIFFNESS M A T R I X  S o  BELOW 
C DO LOOP SETS THE M A I N  DIAGONAL ELEMENT S I I , M D )  = 1.0 AND ALL OTHER 
C ELEMENTS S I I I J I =  0.0 ON ROW I FOR EACH S P E C I F I E D  NODE MOVEMENT 
C X ( I Y .  

DO 208 I = 1,IXNUM 

DO 209 J = 1,NTWID 
I X X  = I X S P C ( 1 )  

S( I X X ,  J )  = 0.0 
209 CONTINUE 
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c 

S ( I X X 9 M D )  = 1.0 
2 0 8  CONTINUE 

CALL  TIME ( 1HP 1 
c----- BELOW ROUTINE SOLVES THE STIFFNESS M A T R I X  EQUATION SX=F B Y  
C AN E L I M I N A T I O N  PROCESS WHICH DOES NOT COMPUTE OUTSIDE O R I G I N A L  
C DIAGONAL BAND O F  NON ZERO ELEMENTS. 

DO 103 I = 1, NQMWID 
I P 1  = I + l  
I PN = I + NWIDTH 
N = o  

N = N + 1  
DO 103 L = I P 1 ,  I P N  

M = M D - N  
I F  S(L,M) 1 104, 1 0 3 ,  1 0 4  

104 X M  = - S ( L , M ) / S ( I , M D )  
F ( L 1  = F ( L )  + X M  * F ( I 1  
MN = M + NWIDTH 
LL = L - I  

S(L,MPI) = S(L,MM) + XM * S(I ,MM+LL) 

I 1  = NEQUAS - NWIDTH + 1 
NEQ = NEQUAS - 1 
NN = o  

DO 1 0 5  I = 111 NEQ 
I P 1  = 1 + 1  
N a 0  

DO 103 MM = M, MN 

1 0 3  CONTINUE 

NN = NN + 1 
DO 1 0 5  L = I P 1 ,  NEQUAS 

N = N + 1  
M = M D - N  

I F  S ( L , M I  9 106, 105, 106 
106 X M  = - S ( L , M ) / S ( I , M D )  

F S L )  = F 4 L )  + X M  * F ( I )  
MN = M .C NWIDTH - NN 
LL = L - I  

S ( L 9 M M )  = S(L,MMI + XM * S( I ,MM+LL)  
DO 105  MM = MI MN 

1 0 5  CONTINUE 
I A  = NEQUAS + MD 

DO 108 I = MD, NEQUAS 
I B  = I A  - I 
I S M 1  = I B  - 1 
IBMN = I B  - NWIDTH 
MB = -1 

DO 108  L = IBMN, IBML 
MB = M B + 1  
MBB = NTWID - MB - X M  - - SCL,MBB)/S( IB,MD) 
F ( L 1  = F ( L )  + X M  * F ( I B )  

I A  = NWIDTH + 2 
N = -1 

DO 109 I = 2, NWIDTH 
I B  = I A  - I 

1 0 8  CONTINUE 
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I B M l  = I B  - 1 
N = N + 1  

DO 109 L = 1, I B M l  
NN = NTWID - N - L 
X M  = - S(LINN)/S( IB,MD) 
S(L,NN) = S(L,NN) + XM * S ( I B 9 M D )  
F ( L )  = F ( L )  + XM * F ( I B )  

109 CONTINUE 
DO 110 I = 1, NEQUAS 

X ( 1 )  = F ( I ) / S ( I , M D )  
110 CONTINUE 

C A L L  TIME ( 1HP 1 

ICLBOT = 1  
ICLTOP = NWIDMl 
JJ = o  

J = J J - 1  

J = J + 2  
STRAINX(N1 = (X(J+NW2+2)+ X(J+NWZ)-X(J)-X(J+Z)I/DENOM 
STRAINY(N1 = (X(J+NW2+3) -  X(J+NWZ+l)-X(J+l)+X(J+3))/DENOM 
STRANXY(N1 = (X (J+NWZ+ZI+X(J+NW2+3) -X (J+NW2)+X(J+NWZ+l ) -X (J )  

-X (J+1 ) + X (  J + 2 ) - X (  J + 3 )  1 /DENOM 
EC = (STRAINX(N1  + S T R A I N Y ( N ) ) / Z * O  
ER = (I((STRAINX(NI-STRAINY(N))**Z )/4.0) + 

1 ( (STRANXY ( N)++2 1 /4.0 1 )*+0.5 

c----- COMPUTION OF THE STATE OF STRAIN AT EACH LATTICE C E L L ( I 1  

DO 300  I = 19NLENM1 

DO 299  N = ICLBOT, ICLTOP 

1 

S T R A I N l ( N 1  = EC + ER 
STRAIN2(N1  = EC - ER 

I F  (STRANXY(N1) 312,310,312 
3 1 0  IF(STRAINX(h)-SiRAINY(N)) 311,320,311 
3 1 2  I F  (STRAINX(N1-STRAINY(N9)  3 1 1 , 3 2 1 r 3 1 1  
3 2 1  I F  (STRANXY(NI1  3139311,314 
313  THEVA(N1 = -45.0 

GO TO 299  

GO TO 299 
3 1 4  THETA(N9 = 45.0 

3 1 1  THETA2 = (ATANF(STRANXY(N)/(STRAINX(N)-STRAINY(N)))) 
THETA2 = THETA2*57.2957795 

I F  (STRANXY ( N )  I301 93019302 
301  I F  (STRAINX(N) -STRAINY(N) )  303,299,302 
3 0 3  THETA2 = THETA2 - 180.0 
3 0 2  I F  ( S T R A I N X ( N ) - S T R A I N Y ( N ) )  304,299,305 

GO TO 3 0 5  

3 0 4  THETA2 = THETA2 + 180.0 

3 2 0  THETA2 = 0.0 
305  T H E i A t N )  = THETA2/2.0 
299 CONTINUE 

GO T O  3 0 5  

JJ = JJ + NW2 
ICLBOT = ICLBOT + NWIDMl 
ICLTOP = ICLTOP + NWIDMl 

300 CONTINUE 
c----- PRINT OUT OF ITERATION DATA 

KOUNTER = KOUNTER + 1 
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I F  (KOUNTER 2) 350, 3 5 3 9  353  
350 I F  ( I T  - 1) 3 5 1 , 3 5 1 9 3 5 2  
3 5 1  P R I N T  1 

P R I N T  6, ( R U N ( I 1 ,  I = 1,101 
P R I N T  36 

GO T O  354 

GO TO 354  
352 P R I N T  1 

353 KOUNTER = 0 
3 5 4  P R I N T  379 I T  

P R I N T  38 
P R I N T  39 
P R I N T  40, I T R M O V 1 9  X ( I T R M O V 1 )  
P R I N T  40, I T R M O V 2 r  X ( I T R M O V 2 )  
P R I N T  40, I T R M O V 3 r  X ( I T R M O V 3 )  
P R I N T  40, I T R M O V 4 ,  X ( I T R M O V 4 1  
P R I N T  409 ITRMOVS,  X ( I T R M O V 5 )  
P R I N T  41 
P R I N T  42 
P R I N T  43, I T R C E L 1 ,  S T R A I N l ( 1 T R C E L l ) r  S T R A I N 2 ( I T R C E L l ) ,  T H E T A ( 1 T R C E  

P R I N T  43, I T R C E L Z ,  S T R A I N 1 ( I T R C E L Z ) ,  S T R A I N Z ( I T R C E L 2 1 ,  T H E T A ( I T R C E  

P R I N T  439 I T R C E L 3 r  S T R A I N l ( I T R C E L 3 ) ,  S T R A I N Z ( I T R C E L 3 1 9  T H E T A ( 1 T R C E  

P R I N T  43, I T R C E L 4 r  S T R A I N l ( I T R C E L 4 ) ,  S T R A I N Z ( I T R C E L 4 ) 9  T H E T A ( I T R C E  

P R I N T  439 I T R C E L 5 ,  S T R A I N l ( I T R C E L S ) ,  S T R A I N 2 ( I T R C E L S ) r  T H E T A ( 1 T R C E  

1 L 1 1  

1L2 1 

1L3 1 

1L4)  

1L5 1 
c----- BELOW R O U T I N E  C A L C U L A T E S  THE S T A T E  OF S T R E S S  AT EACH L A T T I C E  C E L L  
C UJH1Ci-I CORRESPONDS TO T H E  S T A T E  OF S T R A I N S  COKPUTED ABOVE. 

DO 450 I = ~ ~ N C E L L S  
c----- A N A L Y T I C A L  E X P R E S S I O N  3 F  T H E  M E C H A N I C A L  P R O P E R T I E S  ARE T O  B E  
C W R I T T E N  HERE FOR THE P A R T I C U L A R  M E D I U M  UNDER A N A L Y S I S .  
C T H A T  I S  S T R E S S l =  FUNCTION(STRAINl,STRAINZ1AND 
C S T R E S S 2 =  F U N C T I O N ( S T R A I N 1 9 S T R A J N 2 ) .  

S T R E S S l ( I 1  = 3 2 9 6 7 0 3 2 . 9 O * ( S T R A I N l ( I )  + O o 3 0 + S T R A I N 2 ( I ) )  
S T R E S S 2 ( 1 )  = 3 2 9 6 7 0 3 2 . 9 0 + ( S T R A I N 2 ( 1 )  + O o 3 0 * S T R A I N l ( I ) )  

c----- BELOW R O U T I N E  COMPUTE THE PSEUDO E L A S T I C  CONSTANTS E AND V FOR 
C E A C H  C E L L  
C A D D I T I O N A L  L O G I C  NEEDED FOR S T R A I N l = S T R A I N Z  AS FOLLOWS I i t A B S F  
C (STRAINl(I)-STRAIN2(1)))44794489447 

447 I F  ( S T R A I N l ( I ) 1  44594469445 
446 B B  = S T R E S S l ( I ) / S T R A I N Z ( I )  

AA  = S T R E S S 2 ( 1 ) / S T R A I N Z ( I )  
GO TO 444 

448 GO T O  444 
445 BB = ~STRESS2(I)-STRAIN2~I~*STRESSl(I)/STRAINl~I~~/ 

1 ~ S T R A I N 1 ~ 1 ) - ~ S T R A I N 2 ( I ~ * * 2 ~ / S T R A I N L o )  
AA = (STRESS1~I)-STRAIN2(I~*EBl/STRAINl~I? 

C----- L O G I C  TO D E T E R M I N E  I F  P L A N E  STRESS OR PLAniE S T R A I N  FOR COMPUTING 
C V A L U E S  O F  E AND V 

c--.--- E AND V BELOW ARE FOR P L A N E  S T R A I N  PROBLEMS 
444 I F ( I T Y P E i  4 4 2 , 4 4 3 , 4 4 2  

442 V I 1 1  = ( B B l / ( A A  + B B )  
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E t 1 1  = ~ A A * ~ ~ ~ O + V ~ I ~ ~ * ~ ~ ~ ~ ~ ~ O O * V ~ I ~ ~ ~ / ~ ~ ~ O ~ V ~ I ~ ~  
GO T O  4 5 0  

C----- E AND V BELOW ARE FOR PLANE STRESS PROBLEMS 
4 4 3  V ( I )  = BB/AA 

4 5 0  CONTINUE 
E ( I )  = A A * ( l o O - V ( I ) * % 2 )  

c----- BELOW ROUTINE COMPUTES THE STRESS COMPONEhTS I N  THE X - Y  DIRECTICNS 
C FOR EACH L A T T I C E  CELL.  

DO 449 I = 1, NCELLS 
SCENTER = (STRESSl(I)+STRESS2(1))/2oO 
SRADI US = (STRESSl(I)-STRESS2(1))/2oO 
THETA2 = 0 0 0 3 4 9 0 6 5 6 5 0 4 * T H E T A ( I )  

STRESSY(1 )  = SCENTER-(SRADIUS)*(COSF(THETA2)) 
STRESSX(1 )  = SCENTER+(SRADIUS)*(COSF(THETA2)) 

S T R E S X Y ( I 1  = (SRADIUS)*(SINF(THETA2)) 

C A L L  TIME 1HP 1 

I F  f A B S F ( X (  ITRMOVl) -XPKEVUS( 1 ) ) - C L O S T O L )  451,451,455 
4 5 1  IF (ABSF(X(ITRMOVZ)-XPREVUS( 2 ) ) - C L O S T O L )  4 5 2 , 4 5 2 9 4 5 5  
4 5 2  I F  (ABSF(X(ITRNOV3)-XPREVUS( 3 ) ) - C L C S T O L )  4 5 3 9 4 5 3 9 4 5 5  
4 5 3  I F  ( A B S F ( X (  ITRMOV4)-XPREVUS( 4 ) ) -CLOSTCL) 4 5 4 9 4 5 4 9 4 5 5  
4 5 4  I F  (ABSFtX(ITRMOVS)-XPREVUS( 5 ) ) - C L O S T O L )  456 ,456 ,455  

449 CONTINUE 

c----- CLOSURE TOLERANCE CHECK 

4 5 5  XPREVUS( 1 1 = X ( I T R M O V 1 )  
XPREVUS( 2 1 = X( ITRMOV2)  
XPREVUS( 3 1 = X( ITRMOV3)  
XPREVUS( 4 1 = X( ITRMOV4)  
XPREVUS( 5 1 = X( ITRMOV5)  

999 CONTINUE 
c----- P R I N T  OUT O F  F I N A L  SOLUTION 

PRINT 1 
P R I N T  69 ( R U N ( I ) 9 1 = 1 , 1 0 )  
PRINT 500 
P R I N T  502, ITERNUM 
GO T O  4 5 9  

PRINT 6 9  ( R U N ( 1  1 ,  I = l , l O )  
PRINT 500 
PRINT 501 ,  ITERNUM 

4 5 9  PRINT 5 0 3  
PRXNT 39 

P R I N T  409 1 9  X ( I 9  
460 CONTINUE 

PRINT 5 0 4  
PRINT 4 2  

4 5 6  PRINT 1 

DO 460 I=l,NEQUAS 

DO 461 I= l ,NCELLS 
PRINT 4 3 9  I 9  S T R A I N l ( I 1 ,  S T R A I N 2 ( I ) ,  T H E T A ( 1 )  

461 CONTINUE 
PRINT 505  
PRINT 506  

PRINT 43, 19 S T R E S S l I I i ,  S T R E S S 2 i i ) ,  T H E T A ( 1 )  

PRINT 5 0 7  

D O  4 6 2  I= l ,NCELLS 

4 6 2  CONTINUE 



107 

PRINT 508 

PRINT 439 1 9  STRAINX(I), STRAINY(II9 STRANXY(1) 

PRINT 509 
PRINT 510 

PRINT 439 19 STRESSX(II9 STRESSY(I)* STRESXY(1) 
464 CONTINUE 

CALL TIME 4 1HP 1 
9999 CONTXNUE 

END 

DO 463 I = 19 NCELLS 

463 CONTINUE 

DO 464 I = 19 NCELLS 

C----- SUBROUTINE TO COMPUTE THE VARIOUS STIFFNESS COEFFICIENTS IN THE 
C STIFFNESS MATRIX S(I9J) 

SUBROUTINE SMATRIX (SSW~SNW~SNE~SSE,SW~~SW~,SW~~SW~~SN~~SNZ~SN~~SE~~S 

DIMENSION S( 234943 1 
COMMON S 

S (  119MD-NW2-2) = ssw 
S l I1 9MD-NW2-11 = ssw 
S(I19MD-NW2) = sw1 
S( IlrMD-NW2+1) =-5w2 
S(IlrMD-NW2+2) = SNW 
S (  IlrMD-NW2+3) =-SNW 
S(I1rMD-2) = ss3 
S(I1rMD-11 = 552 
S (  I19MD) = SCENl 
S(IlrMD+l) = SCEN2 
S(Il,MD+2) = SN3 
S(Il,MD+3) =-5n2 
S(Il,MD+NWZ-2) = SSE 
S(I19MD+NW2-11 =-SSE 
S(IlrMD+NWZ) = SEl 
S( IlsMD+NW2+1) = SE2 
S( IlrMD+NW2+2) = SNE 
S(Il,MD+NW2+3) = SNE 
EQUATION FOR Y-DIRECTION 
S (  I2rMD-NW2-3) = ssw 
S( I2rMD-NW2-21 = ssw 
S (  I29MD-NW2-1) = sw2 
S (  129MD-NW2) = sw3 
S( 12,MD-NW2+1) =-SNW 
S( 12rMD-NW2+2) = SNW 
S(I2rMD-31) =-552 
S%I29MD-2) = ss1 
S(129MD-1) = SCENZ 
S (  I29MD) = SCENl 
S %  I29MD+1) = SN2 
S(I2rMD+2) = SN1 

S( 12,MD+NW2-2) = S S E  

S (  129MD+NW21 = SE3 
S(I2,MD+NW2+1) = SNE 

1 E ~ S S E ~ ~ S S ~ ~ S S ~ ~ S S ~ ~ S C E N ~ ~ S C E N ~ ~ I ~ ~ I ~ , M D , N W ~ )  

c----- EQUATION FOR X-DIRECTION 

Sd 129MD+NW2-3) =-SSE 

- _  S( 12rMC+NW2-1: - - S E Z  



S (  12rMD+NW2+2) = SNE 
END 
END 
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APPENDIX 11 

DETAILS O F  McCORMICK'S LATTICE ANALOGY 

FOR PLANE STRESS PROBLEMS 
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APPENDIX II 

As stated in the text, the technique for solving s t ress  problems in a 

continuous body by a lattice analogy involves the generation and solution 

of the continuous body. 

written for a lattice cell proposed by McCormick. 

F i g .  2, possesses both flexural and axial structural elements and hence 

three components of movements (two translations and a rotation) of each 

node a r e  needed to describe fully the distortion of a lattice. 

that all three static equilibrium equations in a plane a re  needed to solve 

for these node movements. Since this characteristic of the McCormick 

lattice cell  was found inefficiency relative to the simply connected models 

of Figs. 1 and 3, the McCormick model was used only in  the preliminary 

stages of this study. 

Appendix 11 w i l l  present a computer program 

This lattice cell, 

It follows 

A computer program BODY 1 based on McCormick's lattice cell 

was written in FORTRAN 60 language for the CDC 1604. 

essentially the same a s  the program written for the simply connected 

lattice cells. The only difference i s  in the generation of the stiffness 

matrix equation. The stiffness matrix equation for the McCormick's 

lattice possesses equilibrium equations for moments about each node 

where in  the simply connected lattice only forces  existed. 

the essential difference in the two programs and the programs contain 

descriptive comments cards, it i s  considered sufficient to present only 

the listing of the BODY 1 program. 

The program is 

Since this i s  
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LISTING OF BODY 1 PROGRAM 

111 



112 

0 .  SMITH,RoE.  PROGRAM BODY 1 C E O 1 0 7 4 0  M C C O R M I C K S  L A T T I C E  C E L L  
PROGRAM BODY 1 
D I M E N S I O N  S(2409 5719 X ( 2 4 0 1 ,  F ( 2 4 0 ) 9  F F ( 2 4 0 ) r  F S P C (  5 0 1 9  

1 I F S P C (  5019 I X S P C (  501, A ( 1 0 0 ) ,  B ( l O O ) ,  D ( 1 0 0 ) ,  
2 STRESSl(l001~STRESS2(1001~ T H E T A ( 1 0 0 1 9  S T R A I N l ( 1 0 0 ) ~  
3 S T R A I N 2 ( 1 0 0 ) ,  S T R A I N X ( 1 0 0 ) ,  S T R A I N Y ( 1 0 0 ) ,  S T R A N X Y ( 1 0 0 ) ,  
4 S T R E S S X ( 1 0 0 1 ,  S T R E S S Y ( 1 0 0 ) r  S T R E S K Y ( 1 0 0 1 ,  R U N ( 1 0 1 ,  
5 X P R E V U S ( 5 1 ,  E(1001, V ( 1 O O )  

COMMON S 
C----- BODY 1 PROGRAM WILL S O L V E  PROBLEMS OF P L A N E  S T R E S S  U S I N G  

C M A T E R I A L  P R O P E R T I E S  NECESSARY F O R  A S O L U T I O N  ARE T H E  R E L A T I O N S H I P  
C OF S T A T E S  OF S T R E S S  T O  S T A T E S  O F  S T R A I N .  
C - N O T E - I T  I S  U S U A L L Y  N E C E S S A R Y  TO A L T E R  D I M E N S I O N  S T A T E M E N T  FOR 

C M C C O R M I C K S  L A T T I C E  C E L L .  T H E  M E D I U M  MAY B E  L I N E A R  OR N O N - L I N E A R .  

C 
C 
C 
c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

E A C H  PROBLEM. 

N E Q U A S  

N T W I D  

N W I D T H  

S T R E S S l t I  1 
S T R E S S Z l I f  
T H E T A  ( 1 )  

S T R A I N l ( 1 )  
S T R A I N 2 ( 1 1  

NOT A T  I ONS 

NUMBER OF * ;3VEMENTS--THAT I S  NUIYiBER OF E Q U A T I O N  I N  
M A T R I X  E Q U A T I O N  S X = F  NEGLlAS = N O D E W I D * N O D E L E N * 3  

= T O T A L  W I D T H  O F  B A N D  = 6 * N O D E W I D  + 9 

= B A N D  W I D T H  O F  M A T R I X  S ( I , J )  AND I S  E Q U A L  T O  T H E  NUM- 
BER O F  ELEMENTS FROM THE M A I N  D I A G O N A L  TO T H E  
E X T R E M E  NONZERO ELEMENT.  NOTE---  T Q T A L  W I D T H  OF 
B A N D  WOULD BE = Z ( N W I D T H 1  + 1 = N T W I D  

= E L E M E N T S  I N  THE S T I F F N E S S  M A T R I X  S 

= E L E M E N T S  I N  THE MOVEMENT M A T R I X  ( V E C T O R )  X 

= E L E Q l E N T S  I N  THE C O N S T A N T  VECTOR FF W H I C H  I S  U S E D  T O  
EQUATE T H E  VECTOR F T O  A F T E R  E V E R Y  I T E R A T I O N  

= E L E M E N T S  I N  THE L O A D  M A T R I X  ( V E C T O R )  F 
WILL CHANGE I N  V A L U E  D U R I N G  C O M P U T A T I O N - - A F T E R  E A C H  
I T E R A T I O N  WILL R E S E T  TO F F ( I )  

= MODULUS OF E L A S T I C I T Y - - - A  V A L U E  FOR E A C H  L A T T I C E  
CELL- - -ASSUMED V A L U E  FOR F I R S T  T R I A L - - - I N T E R P O L A T E D  
FROM C U R V E S  ON I T E R A T I O N  T R I A L S - - E A S U M D  ASSUMED 
V A L U E  FOR F I R S T  T R I A L  

= P O I S S O N S  R A T I O - - - A  V A L U E  FOR E A C H  L A T T I C E  C E L L  -1- 
ASSUMED V A L U E  FOR F I R S T  T R I A L - - - I N T E R P O L A T E D  FROM 
CURVES ON I T E R A T I O N  T R I A L S - V A L U M D  IS ASSUMED 
V A L U E  FOR F I R S T  T R I A L  

= NORMAL S T R E S S  MAX. P R I N C I P A L  FOR L A T T I C E  CELL  J 
= NORMAL S T R E S S  M I N o  P R I N C I P A L  FOR L A T T I C E  C E L L  I 
= ANGLE F R O M  1 D I R E C T I O N  T O  X D I R E C T I O N  FOR L A T T I C E  

C E L L  I I N  DEGREES --- ccw IS + 

= E X T E N S I O N  S T R A I N  MAX. P R I N C I P A L  FOR L A T T I C E  C E L L  I 
= EXTENSION STRAIN MIL PRINCIPAL FOR LATTICE CELL I 
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= EXTENSION STRAIN I N  X-DIRECTION FOR L A T T I C E  CELL I 
= EXTENSION STRAIN I N  Y-DIRECTION FOR L A T T I C E  CELL I 
= SHEAR S T R A I N  FOR X - Y  ELEMENT FOR L A T T I C E  CELL  I 

S T R A I N X ( 1 )  
S T R A I N Y ( 1 )  
S T R A N X Y ( 1 )  

C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

' c  C ' C 
C 
C 
C 

I C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

I C 

NCELLS = NUMBER OF LATTICE CELLS = (NODELEN- l ) !NODELEN- l )  

= NUMBER OF NODES I N  THE WIDTH OF THE BODY NODEW I D  

NODELEN = NUMBER OF NODES I N  THE LENGTH OF THE BODY 

= AREA OF S I D E  ELEMENT OF L A T T I C E  CELL I 

= MOMENT OF I N E R T I A  OF S I D E  ELEMENT OF L A T T I C E  
CELL  I 

= AREA OF DIAGONAL ELEMENT OF L A T T I C E  C E L L  I 

= MAXIMUM NUMBER OF ITERATIONS TO BE ALLOWED I N  
O B T A I N I N G  A SOLUTION 

I T E R  

RUN( I) 
( I N P U T )  

= I D E N T I F I C A T I O N  CARD 

BWIDTH 
( I N P U T )  

= WIDTH OF RECTANGULAR BODY 

BLENGTH 
( I N P U T )  

= LENGTH OF RECTANGULAR BODY 

= S I D E  DIMENSION OF THE L A T T I C E  CELL--UNIFORM THROUGH 
OUT BODY--(BWIDTH/CELLEN) AND (BLENGTH/CELLENI = AN 
INTEGER 

CELLEN 
( I N P U T )  

= THICKNESS OF BODY---UNIFORM THROUGHOUT BODY C E L T I C K  
( I N P U T )  

= ELEMENTS I N  F ( 1 )  VECTOR WHICH ARE S P E C I F I E D  E ITHER 
FOR LOADS OR FOR MOVEMENT OF NODES. 

FSPC( I) 
( I N P U T )  

= THE INDEX I FOR F S P C 1 I )  I F S P C (  I) 
( I N P U T )  

I FNUM 
I FNUM 
( I N P U T )  

= NUMBER O F  F S P C ( 1 )  ELEMENTS S P E C I F I E D  
= NUMBER OF F S P C ( 1 )  S P E C I F I E D  

I XSPC ( I) 
( I N P U T )  

= THE INDEX I FOR S ( I 9 M D )  WHERE MOVEMENTS OF NODES 
ARE S P E C I F I E D  

IXNUM 
( I N P U T )  

= NUMBER OF S P E C I F I E D  NODE MOVEMENTS 

= S P E C I F I C A T I O N  OF PARTICULAR CELLS T O  BE MONITORED 
FOR STRESS AND S T R A I N  COMPONENTS DURING ITERATIONS 

ITRCEL1---5 
( I N P U T )  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

ITRMOV1---5 = S P E C I F I C A T I O N  OF PARTICULAR NODE MOVEMENTS TO BE 
( I N P U T )  MONITORED DURING I T E R A T I O N  

XPREVUS(1 )  = STORED NODE MOVEMENTS(SAME AS MONITORED MOVEMENTS) 
( I N P U T  1 TO CHECK FOR CLOSURE. XPREVUS I S  X MOVEMENT FROM 

PREV I O U 5  I TERATION 

CLOSTOL = A VALUE O F  TRANSLATION OF NODE POINT WHICH I S  THE 
( I N P U T  1 S P E C I F I E D  CLOSURE TOLERANCE. 

C----- NOTATIONS USED TO REPRESENT MEMBER STIFFNESSES 
C 
C DSW = DIAGONAL MEMBERS STIFFNESS. 
C DNW EXAMPLE 
C DNE DSW = ( D ( I ) * E ( I )  ) / 2 o 8 2 8 * C E L L E N  DSW ( U N I T S  = L B /  I N  
C DSE WHERE I I S  NUMBER OF CELL WHICH CONTAINS D I A  MEMBER 
C 
C AS = S I D E  MEMBERS STIFFNESS. EXAMPLE 
C AW AS = ( A ( I ) + E ( I )  + A ( I I ) * E ( I I ) ) / C E L L E N  
C AW WHERE INDEX I AND I 1  DENOTE CELL NUMBER ON EACH 
C AE S I D E  O F  MEMBER AS A S ( U N I T S ) = L B / I N  
C 
C BS = S I D E  MEMBERS BENDING STIFFNESS. EXAMPLE 
C BW BS = ( B ( I ) * E ( I )  + B ( I I ) * E ( I I ) ) / C E L L E N  
C BN WHERE INDEX I AND I 1  DENOTE CELL NUMBER ON EACH 
C BE S I D E  OF MEMBER BS B S ( U N 1 T S )  =LB- IN /RA 
C 
c CELLENZ = CELLEN SQUARED 
G 
c----- ALL FORMAT STATEMENTS ARE L I S T E D  BELOW 
e 

1 FORMAT ( 1 H 1 )  
2 F O R M A T  l l O A 8  1 
3 F O R M A T  ( 4 (  110,1PE10.3) 1 
4 FORMAT ( 1 0 1 5  
5 FORMAT ( l P 8 E 1 0 . 3 )  
6 F O R M A T  ( l X 9 1 0 A 8 )  

20 FORMAT ( / /  2 0 H  INPUT D A T A / / )  
21 F O R M A T  ( 4 1 H  MAXIMUM NUMBER OF I T E R A T I O N S  = I 5  / I  
2 2  FORMAT f 3 1 H  MONITORED CELLS ARE 5 1 5  / )  
2 3  F O R M A T  ( 4 6 H  NUMBER OF F ( 1 )  ELEMENTS S P E C I F I E D  = 1 5 / )  
2 4  FORMAT ( 4 6 H  NUMBER O F  NODE MOVEMENTS S P E C I F I E D  = I 5 / )  
2 5  FORMAT ( 3 8 H  WIDTH OF RECTANGULAR BODY = l P E 1 0 0 3 / )  
26 F O R M A T  4 3 9 H  LENGTH OF RECTANGULAR BODY = l P E 1 0 . 3 / )  
27 FORMAT ( 4 3 H  S I D E  DIMENSION OF L A T T I C E  C E L L  = l P E 1 0 . 3 / )  
28 FORMAT ( 3 0 H  THICKNESS OF BODY = 1 P E 1 0 * 3 /  
2 9  FORMAT 4 2 H  MODULUS OF E L A S T I C I T Y  ASSUMED = l P E 1 0 . 3 / )  
30 FORMAT ( 35H POISSONS R A T I O  ASSUMED = l P E 1 0 0 3 /  1 
3 1  FORMAT ( / /  6 0 H  PRINT OUT OF S P E C I F I E D  LOADS OR MOVEMENTS 

32 FORMAT ( /  5 8 H  LOAD MOVEMENT 
1 A T  NODES 1 

1 VALUE / / I  
33 F O R M A T  
34 FORMAT ( 3 3 X ~ I 5 , 1 2 X 9 1 P E l O o 3 )  

( 1 1 X 9 I 5 9 34X 9 1 P E 10 3 

3 5  FORMAT ( 4 1 H  MONITORED NODE MOVEMENTS ARE 5 1 5 / )  



36 FORMAT 
37 FORMAT 
3 8  FORMAT 
39 FORMAT 
40 FORMAT 
41 FORMAT 
4 2  FORMAT 

43 FORMAT 
44 FORMAT 
45 FORMAT 
46 FORMAT 
47 FORMAT 

1 
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( / /  2 5 H  ITERATION DATA 1 
( / /  2 6 H  ITERATION NUMBER I 5  /i1 
( 39H TABLE O F  MONITORED MOVEMENTS / I  
( 3 3 H  MOVEMENT VALUE 1 
( 1 3 X 1 1 5 r 7 X , l P E 1 0 0 3 )  
( / /  3 7 H  TABLE OF MONITORED STRAINS / I  
( 6 4 H  CELL NUMBER MAX. S T R A I N  MINo  S T R A I N  
HETA 1 
~ 1 3 X ~ I 5 ~ 7 X , 1 P E 1 O o 3 ~ 5 X ~ l P E l O o 3 ~ 5 X ~ l P E l O o 3 ~  
( / /  4 3 H  TABLE OF MONITORED STRESS VALUES / I  
( 5 1 H  CELL  NUMBER MAX. STRESS MIN. STRESS) 
( 1 3 x 9  1597X , l P E l O o 3 r 5 X , l P E 1 0 0 3  1 
( 5 4 H  CLOSURE TOLERANCE FOR MONITORED NODE MOVEMENTS 

1= l P E 1 0 0 3 / )  
5 0 0  FORMAT ( i  2 1 H  OUTPUT DATA / / I  
5 0 1  FORMAT I 6 3 H  SOLUTION CLOSED W I T H I N  TOLERANCE A T  ITERAT 

5 0 2  F O R M A T  ( 6 6 H  SOLUTION D I D  NOT CLOSE AFTER S P E C I F I E D  I T E  

5 0 3  FORMAT ( /  33H TABLE OF NODE MOVEMENTS / I  
5 0 4  FORMAT ( / / 5 2 H  TABLE FOR THE STATE O F  S T R A I N  AT EACH CELL  

5 0 5  FORMAT ( / / 5 2 H  TABLE FOR THE STATE OF STRESS AT EACH CELL 

5 0 6  FORMAT ( 6 4 H  CELL NUMBER MAXoSTRESS MINOSTRESS 

5 0 7  FORMAT ( / i  6 4 H  TABLE FOR STRAINS I N  THE X-Y D IRECTIONS F O  

5 0 8  FORMAT ( 6 5 H  CELL NUMBER STRAINX STRAINY 

509 FORMAT ( / /  6 5 H  TABLE FOR STRESSES I N  THE X - Y  D IRECTIONS F 

5 1 0  FORMAT 6 5 H  CELL NUMBER STRESSX STRESSY 

l I O N  NUMBER I 5  11 

1RATION NUMBER I 5  ,/ 1 

1 / I  

1 / I  

1 THETA 1 

1 R  EACH CELL  / 1  

1 STRAINXY 1 

1 0 R  EACH C E L L  / I  

1 STRESXY 1 
C 
C 
C----- READ I N  OF INPUT DATA 
c ----- READ I N  OF I D E N T I F I C A T I O N  CARD 

READ 29 ( R U N ( I 1 ,  I = 1, 10)  
READ 4, ITER,  ITRCEL1,  ITRCELZ, ITRCEL3,  ITRCEL4,  ITRCELS, IFNUM, 

READ 4, ITRMOVl,ITRMOV2, ITRMOV3, ITRMOV4, ITRMOV5 
READ 59 BWIDTH, BLENGTH, CELLEN, CELTICK,  EASUMD, VASUMD, CLOSTOL 

1 IXNUM 

I c COMPUTATION OF NODEWID, NODELENqNEQUAS, NTWID, NWIDTH, NQMWID, NCELLS 
C N L E N M l r  NWIDM1, JP, DENOM, NWIDP1, CELLEN29 MD 
C TO BE USED THROUGHOUT PROGRAM 

BWID = IBWIDTH/CELLEN)  + 100 
BLEN = (BLENGTHICELLEN) + 1.0 
NODEW I D  = BWID 
NODELEN = BLEN 
NEQUAS = NODEW ID*NODELEN*3 
NTWID = NODEWID+6 + 9 
NWIDTH = ( N T W I D - 1 ) / 2  
MD = NWIDTH + 1 
NQMW I D  NEQUAS - NWIDTH 
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NCELLS = (NODEWID - l ) * ( N O D E L E N  - 1 )  
NLENM 1 = (NODELEN - 1 )  
N W I D M l  = (NODEWID - 1 )  
J P  = NODEWID*3 
DENOM = CELLEN*2eO 
N W I D P l  = NODEWID + 1 
CELLEN2 = CELLEN**Z 
NW3 = 3*NODEWID 
READ 39  ( I F S P C ( I ) 9  F S P C ( I ) ,  I = 1 9 I F N U M )  
READ 4, ( I X S P C ( I ) ,  I = 19IXNUM) 

P R I N T  1 
P R I N T  6 9  ( R U N ( I ) 9 1 = 1 , 1 0 )  
P R I N T  2 0  
P R I N T  2 1 9  I T E R  
P R I N T  22, I T R C E L l , I T R C E L 2 r I T R C E L 3 , I T R C E L 4 , I T R C E L 5  
P R I N T  3 5 9  I T R M O V 1 ~ I T R M O V 2 ~ 1 T R M O V 3 , I T R M O V 4 ~ I T R M O V 5  
P R I N T  23, IFNUM 
P R I N T  24, IXNUM 
P R I N T  259 B'nlIDTH 
P R I N T  269 BLENGTH 
P R I N T  279 CELLEN 
PRINT 2 8 ,  CELTICK 
P R I N T  299 EASUMD 
P R I N T  30, VASUMD 
PRXNT 47, CLOSTOL 

c----- P R I N T  OUT OF INPUT DATA 

c----- ROUTINE BELOW ESTABLISHES THE CONSTANT VECTOR F F ( 1 )  
DO 550  I = 1,IFNUM 

I F F  = I F S P C ( 1 )  
F F t I F F )  = F S P C ( 1 )  

5 5 0  CONTINUE 

P R I N T  31 
P R I N T  32 
J = l  

I F  ( IXSPC4 J l  - I F S P C ( 1 ) )  5 5 2 9 5 5 3 , 5 5 2  
5 5 2  I F F  = I F S P C t I )  

P R I N T  33, I F F ,  F F ( I F F 1  
GO TO 3 5 1  

5 5 3  I X X  = I X S P C ( J )  
P R I N T  349 I X X 9  F F ( 1 X X )  
J = J + 1  

c----- TO P R I N T  OUT LOAD AND MOVEMENT S P E C I F I C A T I O N  

DO 5 5 1  I = l t I F N U M  

5 5 1  CONTINUE 
c----- SETTING E ( I 1  AND V ( I )  FOR F I R S T  I T E R A T I O N  

DO 2 0 1  I = 19NCELLS 
E B I I  = EASUMD 
V ( I )  = VASUMD 

2 0 1  CONTINUE 
c----- BELOW I S  DO LOOP 999 INCLUDES ALL COMPUTATION INVOLVED I N  THE 
C I T E R A T I O N  PROCESS 

DO 999 I T  1 9 I T E R  
ITERNUM = I T  

C----- COMPUTATION OF THE STRUCTURAL ELEMENTS FOR EACH L A T T I C E  CELL I 
C INFORMATION I N  FROM I N P U T  AND OTHER SECTION O F  PROGRAM 
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C C E L L E N  9 C E L T I C K t  V ( I 9 t  NODEWID, NODELEN 
C----- INFORMATION OBTAINED FROM T H I S  S E C T I O N  
C A I 1 1 9  B f I ) ,  D f I l  
C 
c----- S I N C E  CELLEN * C E L T I C K  I S  USED I N  ALL EQUATIONS I N  DO LOOP BELOW, 
C WILL COMPUTE O U T S I D E  LOOP--ALSO C E L L E N * + 3 o O * C E L T I C K / 2 4 o O  

CL3TD24 = (CELLEN**~.O)+CELTICK/~~OO 
c I- 1 = ( C E L L E N  * C E L T I C K )  

DO 2 0 0  I= 1,NCELLS 
A (  I) = C L T / ( ( 1 . 0  + V ( I ) ) * Z o O )  
641)  = ~ C L ~ T D ~ ~ ) * ~ ~ ~ ~ - ~ ~ O * V ( I ) ) / ( ~ O O ~ V ~ I ~ * * Z )  
D ( 1 )  = ( V ~ I ) * C L T * 1 0 4 1 4 Z 1 4 ) / ( 1 . 0 - V ( I ) * * 2 )  

200 CONTINUE 
c----- GENERATION OF S T I F F N E S S  MATRIX S I I q J )  ELEMENTS AND THE VECTOR F ( 1 )  
C----- BELOW DO LOOP SETS A L L  S ( I t J )  ELEMENTS TO ZERO BELOW EACH GENERATION 

DO 2 0 2  I = 1,NEQUAS 
DO 202 J = 1,NTWID 

S (  I1J) = 0.0 
202 CONTINUE 

C----- BELOW DO LOOP SETS ALL F ( I 1  ELEMENTS EQUAL TO CONSTANT VECTOR F F ( 1 )  
DO 203 I = 1 t N E Q U A S  

F (  I f = F F f I )  
2 0 3  CONTINUE 

c----- COMPUTING S T I F F N E S S  ELEMENTS FOR F I R S T  CORNER NODE ---THAT I S  
C NODE NUMBER ONE 

N = 1  
I1  = 3*N - 2 
I 2  = I 1  + 1 
I 3  = 11  + 2 
DNW = 0.0 
DSW = 0.0 
DSE = 0.0 
AS = 0.0 
AW = 0.0 
es = 0.0 
BW = 0.0 
DNE = D(N)*E(NIP12.828428*CELLEN) 
AE = A 6 N ) * E ( N ) / C E L L E N  
AN = AE 
BE = B ( N  ) * E (  N 1 /CELLEN 
BN = BE 
C A L L  SMATRIX ( D S W , D S E ~ D N W , D N E , A S ~ A W ~ A E , A N , B S ~ B W S B N ~ B E ~ I ~ , I ~ ~  

1 1 3 ,  MD,NW3,CELLEN,CELLENZI 
c----- COMPUTING S T I F F N E S S  ELEMENTS FOR NODES ON F I R S T  COLUMN EXCLUDING 
C THE CORNER NODES 

DO 204 N = 2, N W I D M l  
I 1  = 3*N - 2 
I 2  = I 1  + 1 
I 3  = 1 1  + 2 
DSE = D%N-ll*E(N-l)/(2.828428*CELLEN) 
DNE = D I  N I * E e N ) /  ( 2 . 8 2 8 4 2 8 * C E L L E N )  
AN = A (  N ) * E ( N  1 /CELLEN 
AE = I A 6 N - l ) * E ( N - 1 l + A i N ) * E t N ) ) / C E L L E N  
AS = A ( N - l r * E ( N - l ) / C E L L E N  
BN = B(. N I * E ( N  E /CELLEN 
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BS = B (N-1  ) * E (  N-1) /CELLEN 
BE = (B(NI*E(N)+B(N-l)*E(N-l))/CELLEN 
CALL SMATRIX ( D S W , D S E I D N W , D N E , A S , A W , A E , A N , B S , B W , B N , B E ~ I ~ ~ I ~ ~  

1 I 3 9  MD,NW3*CELLEN,CELLEN2) 
2 0 4  CONTINUE 

c----- COMPUTING STIFFNESS ELEMENTS FOR TOP NODE ON F IRST COLUMN THAT I S  
C NODE NUMBER NODEWID 

N = NODEWID 
I 1  = 3*N - 2 
I 2  = I1  + 1 
13 = I1  + 2 
DNE = 0.0 
AN = 0.0 
BN = 0.0 
DSE = D(N-l)*E(N-1)/(2.828428*CELLEN) 
AS = A ( N - l ) * E ( N - l ) / C E L L E N  

BS = B ( N - l ) * E ( N - l ) / C E L L E N  

C A L L  SMATRIX ~ D S W , D S E , D N W , D N E I A S I A W I A E , A N , B S , B W , B N , B E ~ I ~ S I ~ ~  

AE = AS 

BE = BS 

1 1 3 9  MDsNW3rCELLENgCELLEN2) 
C----- COMPUTING STIFFNESS ELEMENTS FOR INTERIOR COLUMNS 

NBOT = NWIDPl  
INW = NODEWID 
ISW = NODEWID + 1 
I N E  E 1  
I S E  = a  

N = NBOT 
DO 205 NCOLUMN = 29NLENM1 

C:----- COMPUTING STIFFNESS ELEMENTS FOR BOTTOM NODES ON INTERIOR 
I 1  
I 2  
13 
DSW 
DSE 
AS 
BS 
DNE 
DNW 
AW 
AN 
A€ 
BW 

= 3*N - 2 
= I1 + 1 
= I 1  + 2 
= 0.0 
* 0.0 
= 0.0 
= 0.0 
= D (  N-INE ) *E (  N-INE ) / (2.828428*CELLEN) 

D(N-INW)*E(N-INW)/(2.828428*CELLEN) 
A(N-INW)*E(N-INW)/CELLEN 

= (A(N-INW)*E(N-INW)+A(N-INE)*E(N-INE) I /  
= A (  N-INE)*E(N- INE ) /CELLEN 
= B (  N-INW ) *E(  N-INW 1 /CELLEN 

ELLE 

COLUMNS 

1 

BN = (B(N- INW)*E(N-INW)+B(N-INE)*E(N-INE)) /CELLEN 
BE B(N-INE)*E(N-INE)/CELLEN 
C A L L  SMATRIX ( D S W , D S E , D N W , D N E , A S , A W , A E I A N I B S , B W , B N , B E S I ~ ~ I ~ ~  

1 I 3 9  MD,NW3,CELLEN,CELLEN2) 
C----- COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES FOR INTERIOR COLUMNS 

NBOTPl  = NBOT + 1 
NTOPMl = NBOT + NODEWID - 2 

I 1  = 3*N - 2 
I 2  = I 1  + 1 
1 3  = I 1  + 2 
DSE = D(N-ISE)*E(N-ISE)/(2o828428*CELLEN) 

DO 2 0 6  N = NBOTP19NTOPMl 
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DNE = D(N-INE)*E(N-INE)/(2.828428428*CELLEN) 
DNW = D(N-INW)*E(N-INW)/(2.828428428*CELLEN) 
DSW = D(N-ISW)*E(N-ISW)/(2.828428428*CELLEN) 
AS = (A(N-ISW)*E(N-ISW)+A(N-ISE)*E(N-ISE) ) / C E L L E N  
AW = (A(N~ISW)*E(N-ISW)+A(N-INW)*E(N-INW~)/CELLEN 
AN = (A(N-INE)*E(N-INE)+A(N-INW)*E(N-INW)l/CELLEN 
AE = (A(N-INE)*E(N-INE)+A(N-ISE)*E(N-ISE))/CELLEN 
BS = (B(N- ISW)*E(N-ISW)+B(N-ISE)*E(N-ISE)) /CELLEN 
BW = (B(N-ISW)*E(N-ISW)+B(N-INW~*E(N-INW~)/CELLEN 
BN = (B(N-INE)*E(N-INE)+B(N-INW)*E~N-INW~~/CELLEN 
BE = (B(N-INE)*E(N-INE)+B(N-ISE)*E(N-ISE))/CELLEN 
CALL SMATRIX ( D S W , D S E , D N W , D N E I A S I A W , A E , A N , B S I B W , B N , B E ~ I ~ ~ I ~ ~  

1 139 MDINW~,CELLEN,CELLEN~) 
206 CONTINUE 

C----- COMPUTING STIFFNESS ELEMENTS FOR TOP NODE ON I N T E R I O R  COLUMNS 
N = NBOT + NWIDMl 
I 1  = 3*N - 2 
1 2  = I 1  + 1 
I 3  = I 1  + 2 
DNW = 0.0 
DNE = 0.0 
AN = 0.0 
BN = 000 
DSW = D (  N- ISW)*E(N-ISW) / (2.828428*CELLEN) 
DSE = D(N-ISE)*E(N-ISE)/(2.828428428*CELLEN) 
AW = A(N-ISW )*E(N-ISW /CELLEN 
AS = (A(N-ISW)*E(N-ISW)+A(N-ISE)*E(N-ISE))/CELLEN 
AE A(N-ISE)*E(N-ISE)/CELLEN 
BW = B(N-ISW)*E(N-ISW)/CELLEN 
BS = (B(N-ISW)*E(N-ISW)+B(N-ISE)*E(N-ISE)) /CELLEN 
BE = B(N-ISE)*E(N-ISEl/CELLEN 
CALL SMATRIX ( D S W , D S E , D N W I D N E , A S , A W , A E , A N , B S , B W , B N , B E ~ I ~ S I ~ ~  

1 13, MDqNW3rCELLEN,CELLEN2) 
NBOT = NBOT + NODEWID 
I NW = INW + 1 
I N E  = I N E  + 1 
I sw = ISW + 1 
I S E  = I S E  + 1 

205 CONTINUE 
c ----- COMPUTING STIFFNESS ELEMENTS FOR LAST COLUMN 
C----- COMPUTING STIFFNESS ELEMENTS FOR BOTTOM NODE OF LAST COLUMN 

N = NBOT 
11 = 3*N - 2 
I 2  = I 1  + 1 
I 3  = I1  + 2 
DSW = 0.0 
DNE = 0.0 
DSE = 0.0 
AS = 0.0 
AE = 0.0 
BS = 0.0 
BE = 0.0 
DNW = D(N-INW)*E(N-INW)/(2.828428428*CELLEN) 
AW = A(N-INW)*E(N-INW)/CELLEN 
A N  = AW 
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BW = B(N-INW)*E(N-INW)/CELLEN 
BN = BW 
C A L L  SMATRIX (DSW,DSE,DNW,DNE,AS,AW,AE,AN,BS,BW,BN,BE~I l~I2~ 

1 13,  M D I N W ~ ~ C E L L E N , C E L L E N ~ )  
C----- COMPUTING STIFFNESS ELEMENTS FOR INTERIOR NODES ON LAST COLUMN 

M = N + 1  
NLASTM1 = NODEWID*NODELEN - 1 

I1  = 3*N - 2 
12 = 1 1  + 1 
I 3  = 11 + 2 
DNW = D(N-INW)*E(N-INW)/(2o828428*CELLEN) 
DSW = D(N-ISW)*E(N-ISW)/(2.828428*CELLEN) 

DO 207 N = M9NLASTMl 

AS A(N-ISW)*E(N-ISW)/CELLEN 
AN = A(N-INW)*E(N-INW)/CELLEN 
AW = AS + AN 
BN = B(N-INW)*E(N-INW)/CELLEN 
BS = B(N-ISW)+E(N-ISW)/CELLEN 
BW = BS + BN 
CALL  SMATRIX (DSW,DSE+DNW,DNE,AS,AW1AE,AN,BS,BW,BN,BE~I l~I2~ 

1 13, MDINW~,CELLEN,CELLENZ) 
2 0 7  CONTINUE 

C----- COMPUTING STIFFNESS ELEMENTS FOR LAST NODE 
N = NODEWID*NODELEN 
11 = 3*M - 2 
12 = 1 1  + 1 
E3 = I1  + 2 
DNW = 000 
DSE = 0.0 
DNE = 0.0 
AN = 0.0 
AE = 0.0 
BN = 0.0 
BE = 0.0 
DSW = D(N-ISW)*E(N-ISW)/(Zo828428*CELLENI 
AW = A (  N-ISW )*E(N-ISW /CELLEN 

BW = B (  N-ISW ) * E (  N-ISW 1 /CELLEN 

C A L L  SMATRIX ( D S W , D S E , D N W I D N E , A S , A W ~ A E ~ A N P B S , B W I B N , B E ~ I ~ V I ~ ~  

AS = AW 

BS = BW 

1 13, MD,NW~,CELLENICELLEN~) 
c----- END O F  GENERATING GENERAL MATRIX S ( I , J )  
c ----- BELOW DO LOOP SETS THE DIAGONAL ELEMENT S ( I 9 M D )  = 1.0 AND ALL 

C I S  S P E C I F I E D  
C OTHER ELEMENTS S ( I , J )  = 0.0 ON I ROW WHENEVER THE MOVEMENT X ( 1 )  

DO 208 I = 1,IXNUM 

DO 209 J = 1,NTWID 
I X X  = I X S P C ( 1 )  

S ( I X X I J )  = 0.0 

S(IXX,MD) = 1.0 
209 CONTINUE 

208 CONTINUE 
C----- SOLUTION O F  ST IFFNESS MATRIX EQUATION FOR NODE MOVEMENTS X ( I ) o  
C D IRECT E L I M I N A T I O N  PROCESS WILL STOP I F  A ZERO P I V O T  I S  ENCOUNTERED 
C INFORMATION USED FROM INPUT AND OTHER SECTION OF T H I S  PROGRAM 
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104 XM = -S (L ,M) /S ( I ,MD)  
F ( L 1  = F ( L )  + X M  * F ( I )  
MN = M + NWIDTH 
LL = L - I  

S ( L t M M )  = S(L,MM) + XM * S(I ,MM+LL) 
DO 1 0 3  MM = M, MN 

1 0 3  CONTINUE 
C END O F  TRIANGULAR RESOLUTION OF ALL BU 

I 1  = NEQUAS - NWIDTH + 1 
NEQ = NEQUAS - 1 
NN = o  

DO 1 0 5  I = 11, NEQ 
I P 1  = I + 1  
N = o  

NN = NN + 1 
DO 1 0 5  L = I P 1 ,  NEQUAS 

N = N + 1  
M = M D - N  

I F  ( S(L,M) 1 1069 105,  106 

LAST SECTION OF S ( I , J )  

C 
C----- INFORMATION OBTAINED FROM T H I S  SECTION 
C NODE MOVEMENTS VECTOR X ( 1 )  

S (  I, J)rF(I 1 ,NEQUAS,NTWIDsNTWIDTHtNQMWID 

DO 1 0 3  I = 1, NQMWID 
I P 1  = I + 1  
I PN = I + NWIDTH 
N = o  

N = N + 1  
DO 10.3 L = I P l r  I P N  

M , = M D - M  
I F  ( S(L,M) 1 104, 103, 104 

C NOTE---NEED TO ADD LOGIC STATEMENT FOR ZERO P I V O T  

C NOTE---NEED TO ADD LOGIC STATEMENT FOR ZERO P I V O T  
106 X M  = -S (L ,M) /S ( I ,MD)  

F (  L )  = F ( L )  + XM * F(I) 
MN = M + NWIDTH - NN 
LL = L - I  

S ( L s M M )  = S(L,MMI + XM * S(I ,MM+LL) 
DO 1 0 5  MM = M s  MN 

105 CONTINUE 
C A L L  T IME ( 1HP 1 

C END OF TRIANGULAR RESOLUTION 
C NOTE---WILL E L I M I N A T E  COLUMN BY COLUMN I N  THE TRIANGULAR M A T R I X  
C S ( I , J )  I N  ORDER TO OBTAIN ONLY A DIAGONAL MATRIX SAY 
C S(1,MD) THEN WILL SOLVE FOR X ( 1 ) .  

I A  = NEQUAS + MD 
DO 1 0 8  I = MD, NEQUAS 

I B  = I A  - I 
I B M l  = I B  - 1 
IBMN = I B  - NWIDTH 
MB = -1 

DO 108 L = IBMN, I B M l  
MB = M B + l  
MBB = NTWID - MB 

X M  = - S(L,MBB)/S( IB,MD) 
C NOTE---NEED TO ADD LOGIC STATEMENT FOR ZERO P I V O T  
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C NOTE---SINCE I T  I S  NOT NECESSARY TO GO THROUGH THE E L I M I N A T I O N  OF COLUMN 
C ELEMENTS ABOVE P I V O T  ELEMENTS EXCEPT TO STUDY COMPUTATIONAL 
C ERRORS, WILL NOT GO THROUGH T H I S  COMPUTATION 

F ( L )  = F ( L )  + XM * F ( I B )  
108 CONTINUE 

C END OF D IAGONALIZATION EXCEPT FOR LAST SECTION 
I A  = NWIDTH + 2 
N = -1 

DO 109 I = 2, NWIDTH 
I B  = I A - I  
I B M l  = 18 - 1 
N = N + 1  

DO 109 L = 1, I B M l  
NN = NTWID - N - L 
X M  - - -  S( L s N N  I /S( I B,MD I 
S(L,NN) = S ( L t N N )  + XM * S(IB,MD) 
F ( L )  = F ( L )  + XM * F ( I B )  

109 CONTINUE 
C NOTE---WILL NOW EVALUATE X ( 1 )  BY S IMPLE D I V I S I O N  
C COMPUTING UNKNOWNS X ( I  1 

DO 110 I = 1 s  NEQUAS 
X ( 1 )  = F ( I ) / S ( I , M D )  

110 CONTINUE 
c----- TO COMPUTE THE STATE OF STRAIN AT THE CENTER OF EACH L A T T I C E  C E L L  
c FORM THE MOVEMENT OF THE NODE P O I N T S  X ( I )  

I C L B O T  = 1  
I C L T O P  = N W I D M l  
JJ = o  

J = J J - 2  

J = J + 3  

DO 300 I = 1,NLENMl 

DO 299 N = ICLBOT, ICLTOP 

c;----- TO COMPUTE S T R A I N S  WITH REFERENCE TO X-Y D IRECTIONS 
S T R A I N X ( N 1  = ( X ( J + J P + 3 )  + X ( J + J P )  - X ( J )  - X ( J + 3 ) ) / D E N O M  
S T R A I N Y ( N 1  = ( X ( J + J P + 4 )  - X ( J + J P + l )  - X ( J + l )  + X ( J + 4 ) ) / D E N O M  
STRANXYtN) = ( X ( J + J P + 3 )  + X ( J + J P + 4 )  - X ( J + J P )  + X ( J + J P + l )  - X ( J )  

1 - X ( J + l )  + X ( J + 3 )  - X ( J + 4 ) ) / D E N O M  
----- TO COMPUTE P R I N C I P A L  STRAINS 

C EC = S T R A I N  AT CENTER OF MOHRS C I R C L E  
C ER = RADIUS OF MOHRS CIRCLE 

EC = ( S T R A I N X ( N 1  + S T R A I N Y ( N ) ) / Z o O  
ER = ((((STRAINX(N)-STRAINY(N))**2 )/4*0) + 

1 ( ( S T R A N X Y ( N ) * * Z  ) / 4 0 0 ) ) * * 0 0 5  
S T R A I N 1 4 N )  = EC + ER 
S T R A I N Z ( N 1  = EC - ER 

c----- BELOW LOGIC IS TO TAKE CARE OF THE CASES OF A T A N F ( 2 )  WHERE Z = 
C ( O / O )  OR (1/0) 

I F  (STRANXY(N1)  312,310,312 
310 IF(STRAINX(N)-STRAINY(N)) 311,320,311 
3 1 2  I F  ( S T R A I N X ( N ) - S T R A I N Y ( N ) )  311,321,311 
321  I F  (STRANXY(N1  1 313,311,314 
313 T H E T A ( N )  = - 4 5 0 0  

314 THETA(N1  = 45.0 
GO TO 299 

GO TO 2 9 9  
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3 1 1  T H E T A 2  = ( A T A N F ( S T R A N X Y ( N ) / ( S T R A I N X ( N ) - S T R A I N Y ( N ) ) ) I  
c----- C H A N G I N G  T H E T A 2  TO DEGREES 

C----- BELOW L O G I C  I S  TO P L A C E  THETA2 I N  CORRECTION QUADRANT S I N C E  
C I N  THE A T A N F (  1 R O U T I N E  ONLY ANGLES I N  F I R S T  AND SECOND QUADRANT 
C ARE COMPUTED 

T H E T A 2  = T H E T A 2 * 5 7 . 2 9 5 7 7 9 5  

I F ( STRANXY ( N 1 1 30 1 9  301  9 302 
3 0 1  IF ( S T R A I N X ( N ) - S T R A I N Y ( N ) )  30392999302 
303 T H E T A 2  = T H E T A 2  - 180.0 

302 I F  ( S T R A I N X ( N ) - S T R A I N Y ( N 1 )  3049299r305 
304 T H E T A 2  = T H E T A 2  + 180.0 

320 T H E T A 2  = 0.0 
305 T H E T A ( N 1  = THETA2/2 .0  
299 C O N T I N U E  

GO TO 305 

GO TO 305 

JJ = JJ f JP 
I C L B O T  = I C L B O T  + N W I D M l  
I C L T O P  = I C L T O P  + N W I D M l  

300 C O N T I N U E  
c----- P R I N T  OUT OF I T E R A T I O N  D A T A  
C P R I N T  OUT OF NODE MOVEMENT FOR EACH ITERATION-- -ONLY THOSE MOVE- 
C MENTS B E I N G  MONITORED WILL BE P R I N T E D  H E R E  

P R I N T  1 
P R I N T  6 9  ( R U N ( I I 9  I = 1 , l O )  
P R I N T  36 
P R I N T  379 I T  
P R I N T  38 
P R I N T  39 
P R I N T  409 I T R M O V 1 9  X ( I T R M O V 1 )  
P R I N T  409 ITRMOV2,  X ( I T R M O V 2 )  
P R I N T  40, I T R M O V 3 9  X (  I T R M O V 3 )  
P R I N T  40, ITRMOV4,  X ( I T R M O V 4 )  
P R I N T  409 I T R M O V 5 r  X ( I T R M O V 5 )  

P R I N T  41  
P R I N T  42 
P R I N T  439 I T R C E L 1 9  S T R A I N l ( I T R C E L l ) ,  S T R A I N 2 ( I T R C E L l ) r  T H E T A ( 1 T R C E  

P R I N T  439 I T R C E L 2 9  S f R A I N l ( I T R C E L 2 ) r  S T R A I N Z ( I T R C E L 2 ) r  T H E T A ( 1 T R C E  

P R I N T  439 I T R C E L 3 9  S T R A I N l ( I T R C E L 3 ) 9  S T R A I N Z ( I T R C E L 3 ) s  T H E T A ( 1 T R C E  

P R I N T  439 I T R C E L 4 9  S T R A I N 1 ( I T R C E L 4 1 9  S T R A I N Z ( I T R C E L 4 ) g  T H E T A ( 1 T R C E  

c----- TO P R I N T  OUT M O N I T O R E D  S T R A I N S  V A L U E S  

1L1) 

2 L 2  1 

1L3 1 

1L4 1 
P R I N T  4 3 9  I T R C E L S ,  S T R A I N l ( I T R C E L 5 ) 9  S T R A I N Z ( I T R C E L 5 ) ,  T H E T A ( 1 T R C E  

l L 5 )  
C----- C O M P U T A T I O N  OF SECANT PLANE FOR E A C H  L A T T I C E  C E L L - - - E ( I )  V ( I 1  
C AND A L S O  S T A T E  OF S T R E S S  
C I N F O R M A T I O N  U S E D  FROM I N P U T  AND OTHER S E C T I O N S  OF PROGRAM 
C S T A T E  OF S T R E S S  VERSUS S T A T E  OF S T R A I N  T H A T  I S  
C S T R A I N l ( 1 )  AND S T R A I N Z ( 1 )  
C----- I N F O R M A T I O N  O B T A I N E D  FROM T H I S  SECTION---  E ( 1 ) r  V ( I I r  S T R E S S l ( I 1  
C S T R E S S 2  (2 1 
C 
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c----- FOR PROGRAM BODY1 WILL USE HOOKES L A W  FOR F THAT I S  WILL BE A 
C L I N E A R  MATERIAL---WILL SIMPLY WRITE VALUES OF E AND V I N  PROGRAM 

c----- HOOKES LAW FOR SIGMA = F ( E l t E 2 )  BELOW STEEL 
DO 4 5 0  I = 19NCELLS 

S T R E S S l ( 1 )  = 1 1 9 0 o 4 7 6 2 * ( S T R A I N l ( I )  + O o 4 * S T R A I N Z ( I ) )  
S T R E S S 2 ( 1 1  = 1 1 9 0 0 4 7 6 2 * ( S T R A I N 2 ( 1 )  + O o 4 * S T R A I N l ( I ) I  

BB = (STRESS2(I)-STRAIN2(I~*STRESSl~I~/STRAINl~I~~/ 
1 ( S T R A I N 1 ( I ) - ( S T R A I N 2 ( I ~ * * 2 ~ / S T R A I N l ~ I ~ ~  

AA = (STRESS1(I)-STRAIN2(I~*BB~/STRAINl~I~ 
V ( 1 )  = BB/AA 

c----- TO SOLVE FOR REVISED E ( 1 )  AND V ( 1 )  

E ( 1 )  = A A * ( l o O - V ( 1 ) + + 2 )  
4 5 0  CONTINUE 

c----- COMPUTATION OF STRESSES ON X-Y PLANES 
C INPUT DATA TO T H I S  SECTION ARE S T R E S S l ( 1 ) r  S T R E S S Z ( I ) *  T H E T A ( 1 )  
C OUTPUT OF T H I S  SECTION I S  S T R E S S X ( I I 9  S T R E S S Y ( 1 ) r  S T R E S X Y ( 1 )  

D O  449 I = 1 9  NCELLS 
SCENTER (STRESS1 ( I )+STRESS2 ( I 1 1 / 2 0 0  
SRADIUS = ( S T R E S S l ( I ) - S T R E S S 2 ( 1 )  )/2.0 
THETA2 = 0003490658+THETA(  I) 

S T R E S S Y ( I 1  = SCENTER-(SRADIUS)*(COSF(THETA2)) 

= 

S T R E S S X ( 1 )  = SCENTER+(SRADIUS)*(COSF(THETA2)) 

STRESXY( I) = ( S R A D I U S ) * ( S I N F ( T H E T A Z )  1 

C----- TEST ON CLOSURE BASED ON MOVEMENTS OF NODES 
449 CONTINUE 

I F  ( A B S F ( X (  ITRMOV1)-XPREVUSI 1 ) ) -CLOSTOL)  4 5 1 , 4 5 1 9 4 5 5  
4 5 1  I F  (ABSF(X(ITRMOV2]-XPREVUS( 2 1)-CLOSTOL) 4 5 2 , 4 5 2 9 4 5 5  
4 5 2  I F  ( A B S F ( X ( I T R M O V 3 ) - X P R E V U S (  3 ) ) -CLOSTOL)  4 5 3 9 4 5 3 9 4 5 5  
4 5 3  I F  (ABSF(X(ITRMOV4)-XPREVUS( 4 ) ) -CLOSTOL)  4 5 4 9 4 5 4 9 4 5 5  
4 5 4  I F  ( A B S F ( X (  ITRMOV5)-XPREVUS( 5 1) -CLOSTOL) 4 5 6 9 4 5 6 9 4 5 5  

c*---- SETTING X (  1---5 ) = XPREVUS(ITRM0V--1 
4 5 5  XPREVUS( 1 1 = X ( I T R M O V 1 )  

XPREVUS( 2 1 = X ( I T R M O V 2 )  
XPREVUS( 3 1 = X ( I T R M O V 3 )  
XPREVUS( 4 1 = X ( I T R M O V 4 )  
XPREVUS( 5 1 = X (  ITRMOV5) 

c----- STATEMENT 999 I S  CONTINUE STATEMENT OF I T E R A T I O N  LOOP 
C STATEMENT 456 WILL BE START OF P R I N T  OUT OF OUTPUT 

999 CONTINUE 
P R I N T  1 
P R I N T  6 9  I R U N ( I ) 9 I = l , l O )  
P R I N T  500 
P R I N T  5 0 2 9  ITERNUM 
GO TO 4 5 9  

P R I N T  69 ( R U N ( I ) 9 I = l r l O )  
P R I N T  500 
P R I N T  5019 ITERNUM 

4 5 9  P R I N T  5 0 3  
P R I N T  3 9  

P R I N T  409 1 9  X ( I )  
460 CONTINUE 

P R I N T  5 0 4  
P R I N T  4 2  

4 5 6  P R I N T  1 

DO 460 I=l ,NEQUAS 
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DO 461 I = l S N C E L L S  
P R I N T  439 I, S T R A I N l ( I ) ,  S T R A I N Z ( 1 ) q  THETA411 

461 CONTINUE 
P R I N T  505 
P R I N T  5 0 6  

P R I N T  439 1 9  S T R E S S l ( I 1 9  S T R E S S Z ( 1 ) r  T H E T A ( 1 )  

P R I N T  507 
P R I N T  5 0 8  

P R I N T  439 1 9  S T R A I N X ( I 1 9  S T R A I N Y ( 1 ) r  STRANXY(1 )  

P R I N T  5 0 9  
P R I N T  5 1 0  

P R I N T  439 I, S T R E S S X ( I I 9  S T R E S S Y ( I I 9  S T R E S X Y I I )  

END 

DO 462 I = l r N C E L L S  

462 CONTINUE 

DO 463 I = 1 s  NCELLS 

463 CONTINUE 

DO 464 I = 1, NCELLS 

464 CONTINUE 

SUBROUTINE SMATRIX ( D S W 9 D S E 9 D N W , D N E , A S ~ A W , A E , A N , B S , B W , B N , B E 9 1 1 ~ 1 2 ~  

DIMENSION S(240957) 
COMMON S 

S(119MD-NW3-3) = -DSW 
S( I1 rMD-NW3-21  = -DSW 
S ( I 1  9MD-NW3 1 = -AW 
S(I l ,MD-NW3+3) = -DNW 
S ( I l * M D - N W 3 + 4 1  = DNW 
S ( 1 l t M D - 3 1  = - lZoO*BS/CELLENZ 
S I I1 ,MD-1 )  = 6oO*BS/CELLEN 
S ( I 1 , M D )  = (AE+AW+DNE+DNW+DSE+DSW+lZoO*(BN+BS)/CELLENZ) 
S ( I l , M D + l )  = (DNE+DSW-DSE-DNW) 
S (  I l ,MD+Z 1 = 600* (  BS-BN ) /CELLEN 
S ( I 1 9 M D + 3 )  = -12oO*BN/CELLENZ 
S ( I l , M D + S )  = -6*O*BN/CELLEN 
S (  119MD+NW3-3) = -DSE 

S (  I l r M D + N W 3 )  = -AE 
S( I l ,MD+NW3+3) = -DNE 
S ( I1  9 MD+NW3+4 1 = -DNE 

S (  I29MD-NW3-4) = -DSW 
S (  I29MD-NW3-3) = -DSW 
S(I29MD-NW3) = -12.0*BW/CELLENZ 
S( I2rMD-NW3+1) = +.O*BW/CELLEN 
S (  I2,MD-NW3+2) = DNW 
S(I29MD-NW3+3) = -DNW 
S ( I 2 9 M D - 3 )  = -AS 
S ( I 2 9 M D - 1 )  = (DSW-DNW+DNE-DSE) 
S (  1 2 9 M D l  = (DSW+DNW+DNE+DSE+AN+AS+lZoO*(BE+BW)/CELLENZ) 

S ( I Z * M D + 3 1  = -AN 
S ( I 2 r M D + N W 3 - 4 )  = DSE 
S(IZ,MD+NW3-3) = -DSE 

1 1 3 s  MD9NW3,CELLENtCELLENZ) 

C ST IFFNESS ELEMENTS BELOW ARE FOR FORCES I N  X-DIRECTION 

S ( I 1, MD+NW3-2 1 = DSE 

C STIFFNESS ELEMENTS BELOW ARE FOR FORCES I N  Y-DIRECTION 

S ( I Z * M D + l )  = 6oO*(BE-BW)/CELLEN 



S( 12sMD+NW3) = -12oO*BE/CELLEN2 
S( 12tMD+NW3+1) = 6oO*BE/CELLEN 
S (  12rMD+NW3+2) = -DNE 
S( I29MD+NW3+3) = -DNE 

S( I3sMD-NW3-1) = 6*O*BW/CELLEN 
S (  13rMD-NW3) = 200*BW 
S 4 I 3 9  MD-5 1 = -6oO+BS/CELlEN 
S(139MD-3)  = 200*BS 
S(139MD-21 = 6oO*(BS-BMI/CELLEN 
S (  I 39MD-1)  = 6oO*(BE-BWI/CELLEN 
S( I 3 9 M D )  = ( BW+BN+BE+BS 1 *40 0 
S ( I 3 9 M D + l )  = 600*BN/CELLEN 
S ( I 3 9 M D + 3 )  = ZoO*BN 
S( I39MD+NW3-1)  = -6*O+BE/CELLEN 
S (  139MD+NW3) = 2oO*BE 

C STIFFNESS ELEMENTS BELOW ARE FOR MOMENTS 

END 
END 

12 6 
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0 0  SMITH ROE. PROGRAM BODY 2 GENERAL SIMPLY CONNECTED L A T T I C E  MODEL 

CANTILEVER BEAM F I N E R  MESH FOR STRESS D I S T R I B U T I O N  UNDER LOADS 

I N P U T  DATA 

MAXIMUM NUMBER OF ITERATIONS = 1 

MONITORED CELLS ARE 1 2 3 4 

MONITORED NODE MOVEMENTS ARE 1 2 

NUMBER OF F ( I )  ELEMENTS S P E C I F I E D  = 36 

NUMBER OF NODE MOVEMENTS S P E C I F I E D  = 2 6  

WIDTH OF RECTANGULAR BODY = 4 0 0 0 0 E + 0 0  

LENGTH OF RECTANGULAR BODY = 6 0 0 0 0 E + 0 0  

S I D E  D IMENSION OF L A T T I C E  C E L L  = 5 0 0 0 0 E - 0 1  

THICKNESS OF BODY = 10000E+OO 

MODULUS OF E L A S T I C I T Y  ASSUMED = 3 0 0 0 0 E + 0 7  

POISSONS R A T I O  ASSUMED = 3 o 0 0 0 E - 0 1  

5 

3 4 5 

CLOSURE TOLERANCE FOR MONITORED NODE MOVEMENTS E 1 0 0 0 0 E + 0 0  

P R I N T  OUT OF S P E C I F I E D  LOADS OR MOVEMENTS AT NODES 

LOAD MO V EM EN T VALUE 

1 

19 

37 

55 

73 

91 

17 
1 8  

3 5  
36 

5 3  
5 4  

7 1  
72  

8 9  
90 

- 3 0 7 5 0 E + 0 2  
- 1 0 6 2 3 E - 0 2  

8 0 4 3 3 E - 0 3  
- 2 0 6 2 5 E + 0 3  
- 1 0 6 1 7 E - 0 2  

6 9 4 0 E - 0 3  
- 3 0 0 0 0 E + 0 3  
- 1 0 6 1 0 E - 0 2  

5 0 4 4 8 E - 0 3  
- 3 0 0 0 0 E + 0 3  
- 1 0 6 0 7 E - 0 2  

4.056E-03 
- 3 0 0 0 0 E + 0 3  
- 1 0 6 0 3 E - 0 2  

2 0 6 6 5 E - 0 3  
- 2 0 6 2 5 E + 0 3  
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107 
108 

109 
125 
126 
143 
144 
16 1 
162 
179 
180 
197 
198 
215 
216 

217 
219 
221 

233 
234 

-10602E-02 
1 329E-03 

-3o750E+02 
-10602E-02 
-70474E-06 
-10603E-02 
-10340E-03 
-10605E-02 
-20672E-03 
-10609E-02 
-4.058E-03 
-10612E-02 
-5.444E-03 
-10619E-02 
-60936E-03 
-2o500E+O3 
-50000E+03 
-2*500E+03 
-10625E-02 
-80428E-03 
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CANTILEVER BEAM FINER MESH FOR STRESS DISTRIBUTION UNDER LOADS 

I TERAT I O N  DATA 

ITERATION NUMBER 1 

TABLE OF MONITORED MOVEMENTS 

MOVEMENT VALUE 
1 -3000269946E-02  
2 9 0 6 9 5 0 1 2 4 3 E - 0 3  
3 -2081369407E-02  
4 9 0 6 5 7 8 6 4 5 5 E - 0 3  
5 -2063032800E-02  

TABLE OF MONITORED STRAINS 

CELL NUMBER MAX. STRAIN MINo STRAIN THETA 
1 8 003825628E-05 -1021794494E-04  3 0 2 7 8 9 0 6 6 1 E + C l  
2 6 0 6 1 1 6 0 8 9 1 E - 0 5  -1062220941E-04  1 0 2 4 3 9 4 3 3 8 E ~ 0 1  
3 6 84817200E-05 -2011362318E-04  6.46671443E+@O 
4 7 0 8 8 8 4 9 2 9 8 E - 0 5  -2.57573902E-04 4.88383078E+OO 
5 9 r  19976205E-05 -3004542868E-04  4.50047363E+00 
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CANTILEVER BEAM FINER MESH FOR STRESS DISTRIBUTION UNDER LOADS 

OUTPUT DATA 

SOLUTION CLOSED WITHIN TOLERANCE AT ITERATION NUMBER 1 

TABLE OF NODE MOVEMENTS 

MOVEMENT 
1 
2 
3 
4 
5 
6 
7 
s 
9 

1 0  
11 
1 2  
1 3  
14 
15 
1 6  
17 
18  
19 
2 0  
2 1  
2 2  
2 3  
2 4  
25 
26  
27  
28 
29  
3 0  
3 1  
32  
33  
3 4  
35 
36  
3 7  
38 
3 9  
4 0  
41 
4 2  
43 
44 

VALUE 
-3000269946E-02 

9069501243E-03 
-2081369407E-02 

9065786455E-03 
-2063032800E-02 

9056239930E-03 
-2045278534E-02 

9043728342E-03 
-2027966100E-02 

9028991183E-03 
-2011019425E-02 

9 0  12001506E-03 
-1094412616E-02 

8 092452359E-03 
-1078164348E-02 

8069824659E-03 
-1062300000E-02 

8043300000E-03 
-3000316425E-02 

7087591240E-03 
-2081112035E-02 

7085055906E-03 
-2062734960E-02 

7079439829E-03 
-2044927054E-02 

7071170157E-03 
-2027553117E-02 

7 060393794E-03 
-2010536846E-02 

7 0  4717334QE-03 
-1093857053E-02 
7 0  31512206E-03 

-1077530956E-02 
7013553283E-03 

-1061700000E-02 
6 0 9 4 0 0 0 0 0 O E ~ 0 3  

-2099692888E-02 
6016011935E-03 

-2 8 07 5 3 8 49 E-0 2 
6013421061E-03 

-2062466714E-02 
6009977836E-03 

-2044670948E-02 
60 04796864E-03 



~. 

13 2 

45 
46 
47 
48 
49 
50 
5'1 
52  
53 
54 
55 
56 
57 
58 
59 
60 
6 1  
62 
6 3  
64 
65 
66 
67  
68 
69 
70 
71  
72 
73 
74 
75 
76 
77 
78 
79 
80 
8 1  
82 
8 3  
84 

86 
87 
88 
89 
90 
91  
92 
93 
94 
95 
96 
97 
98 
99 

a5 

-2027260843E-02 
5 097540860E-03 

-2.10185563E-02 
5088054324E-03 

-1 093438639E-02 
5 076281629E-03 

-1077057287E-02 
5 62 102602 E-03 

-1 .61000000E-02 
5 .44800000E-03 

-2098697488E-02 
4052233977E-03 

-2080231520E-02 
4049570141E-03 

-2 062182273E-02 
4.474247 14E-03 

-2044481139E-02 
4044616569E-03 

-2027077717E-02 
4040368582E-03 

-2009962989E-02 
4034315281E-03 

-1093156771E-02 
4. 26362564E-03 

-1 076689648E-02 
4. 16588478E-03 

-1.60700000E-02 
4 0 560 0000 E-0 3 

-2097530660E-02 
2 9432 5 262 E-0 3 

-2079595255E-02 
2091737884E-03 

-2 6 1895474E-02 
2090796067E-03 

-2044353424E-02 
2 89995 11 1E-03 

-2026990322E-02 
2 088284379E-03 

-2 09855 267 E-0 2 
2085216527E-03 

-1 093000754E-02 
2 080656614E-03 

-1076485291E-02 
2074577321E-03 

-1.60300000E-02 
2 .66500000E-03 

-2096147244E-02 
1040914987E-03 

-2078948627E-02 
1038614713E-03 

-2061665273E-02 
1 39 15 0405 E-0 3 

-2 e44298100E-02 
1040029663E-03 

-2026986826E-02 
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1 0 0  
1 0 1  
1 0 2  
1 0 3  
1 0 4  
1 0 5  
1 0 6  
1 0 7  
1 0 8  
1 0 9  
1 1 0  
111 
1 1 2  
1 1 3  
114 
1 1 5  
1 1 6  
1 1 7  
1 1 8  
1 1 9  
1 2 0  
1 2 1  
1 2 2  
1 2 3  
1 2 4  
1 2 5  
1 2 6  
127  
1 2 8  
1 2 9  
1 3 0  
1 3 1  
1 3 2  
1 3 3  
1 3 4  
135  
1 3 6  
1 3 7  
138 
1 3 9  
1 4 0  
141 
1 4 2  
1 4 3  
1 4 4  
145  
146  
147  
1 4 8  
1 4 9  
1 5 0  
1 5 1  
1 5 2  
1 5 3  
1 5 4  

1o40360597E-03 
-2009842828E-02 

1 o39801984E-03 
-1092953163E-02 

1 382 7 8  185 E-0 3 
-1076381773E-02 

1035842910E-03  
-1060200000E-02 

1 32900OOOE-03 
-2 b94528674E-02 
-8 33236413E-05 
-2078461009E-02 
-9070638765E-05 
-2061541327E-02 
-8037067224E-05 
-2044320797E-02 
-6 047046586E-05 
-2027053046E-02 
-4 6 77 8 7 8 47 E- 0 5 
-2009905903E-02 
- 3 0  21501591E-05 
-1092994182E-02 
-2010775896E-05 
-1076404382E-02 
-1030193909E-05 
-10602GOOOOE-02 
-704740000CE-06 
-2093869444E-02 
-1055282941E-03 
-2078233336E-02 
-1055149392E-03  
-2061551167E-02 
-1b53669676E-03 
-2a44417489E-02 
-1 051317543E-03 
-2027173098E-02 
-1048526705E-03 
- 2 0  10025219E-02 
-1 0 45408 9 95E-0 3 
-1093107435E-02 
-1041941623E-03 
-1076506344E-02 
-1038077940E-03 
-1a60300000E-02 
-1 0 34OOOOOOE-03 
-2094088773E-02 
-3  0 03405973E-03 
-2078387904E-02 
-3 0 017167 15E-03 
-2b61723496E-02 
-2099686650E-03 
-2044588505E-02 
-2096890444E-03 
- 2 0  27335683E-02 
-2 093240938E-03 
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155  
1 5 6  
1 5 7  
1 5 8  
1 5 9  
1 6 0  
1 6 1  
1 6 2  
1 6 3  
1 6 4  
1 6 5  
1 6 6  
167  
1 6 8  
1 6 9  
1 7 0  
1 7 1  
1 7 2  
1 7 3  
174 
1 7 5  
1 7 6  
1 7 7  
1 7 8  
179 
1 8 0  
1 8 1  
1 8 2  
1 8 3  
1 8 4  
185  
1 8 6  
1 8 7  
1 8 8  
1 8 9  
1 9 0  
1 9 1  
1 9 2  
1 9 3  
1 9 4  
1 9 5  
196  
1 9 7  
1 9 8  
1 9 9  
2 0 0  
2 0 1  
2 02 
2 0 3  
2 04  
2 05  
2 0 6  
2 07 
2 08  
2 09  

-2010188374E-02 
-2088607890E-03 
-1 93281566E-02 
-2082859776E-03 
-1 7 6 7 0 9  138E-02 
-2075898213E-03 
-1060500000E-02 
-2  067200000E-03 
-2094986343E-02 
-4055339400E-03 
-2078941636E-02 
-4 5 2 1 6 2  5 2 1E-0 3 
-2 062089551E-02 
-4049178967E-03 
-2 044838065E-02 
-4 45642 145E-03 
-2 27534907E-02 
-4 4 10076 06 E-0 3 
-2010390254E-02 
-4 34766344E-03 
-1093515174E-02 
-4026672825E-03 
-1076972399E-02 
-4016770747E-03 
-1 060900000E-02 
-4 0 58 00000  E-0 3 
-2 964  15801E-02 
-6013316709E-03 
-2 79861899E-02 
-6008743507E-03 
- 2  6 2 6 5 6  130E-02 
-6004437784E-03 
-2 4 5 1  5 5 8  33E-0 2 
-5 99842895E-03 
-2027764550E-02 
-5093962308E-03 
-2010637858E-02 
-5.857435656-03 
-1093818843E-02 
-5 0 748  709C2E-03 
-1077355533E-02 
-5 0 6 1310369E-03 
-1e61200000E-02 
-5 044400000E-03 
-2e98176886E-02 
-7o79185515E-03 
-2 8 1 12  56 96E-0 2 
-7073473899E-03  
-2 063413248E-02 
-7 067573779E-03 
-2045491454E-02 
-7 6 17685 6 1 E-0 3 
-2028022082E-02 
-7054128593E-03 
- 2 0  10955064E-02 
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2 1 0  
2 1 1  
2 1 2  
2 1 3  
2 14 
215 
2 16 
2 1 7  
2 1 8  
2 19 
2 2 0  
2 2 1  
2 2 2  
223  
2 2 4  
225 
2 2 6  
227  
228  
229  
2 3 0  
2 3 1  
232  
233  
2 3 4  

-7043160843E-03 
-1094213920E-02 
-7029082720E-03 
-1077812496E-02 
-7012272607E-03 
-1061900000E-02 
-6093600000E-03 
-2099923834E-02 
-9051397656E-03 
-2 082698176E-02 
-9047200468E-03 
-2064309993E-02 
-9042684137E-03 
-2045772340E-02 
-90 34469526E-03 
-2028361812E-02 
-9022519558E-03 
-20 11378505E-02 
-9007774740E-03 
-1094726388E-02 
-8090000615E-03 
-1078414508E-02 
-8068635497E-03 
-1062500000E-02 
-8042800000E-03 

TABLE F O R  THE STATE OF STRAIN A T  EACH CELL 

CELL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12 
13  
14 
15 
16 
17 
1 8  
19 
20  
2 1  
22 
23 
24 
25 

MAX. S T R A I N  
8003825628E-05 
6061160891E-05 
6084817200E-05 
7 088849298E-05 
9 0  19976205E-05 
1 0  06559925E-04 
1022340925E-04 
1 0  28831939E-04 
2028643137E-04 
1034969184E-04 
9065842493E-05 
8072153185E-05 
9024349701E-05 
1003236747E-04 
1 0  13136369E-04 
1033905212E-04 
3m03206685E-04 
20 09405460E-04 
1057060525E-04 
1032855450E-04 
1025912018E-04 
1028427421E-04 
1037403776E-04 
1041984555E-04 
3031868601E-04 

MINo S T R A I N  
-1021794494E-04 
-1062220941E-04 
-2011362318E-04 
-2057573902E-04 
-3m04542868E-04 
-3054848682E-04 
-4009311705E-04 
-4066272130E-04 
-1081732899E-04 
-1062919032E-04 
-1078655538E-04 
-2012701022E-04 
-2055149157E-04 
-3000605261E-04 
-3045307488E-04 
-3085097195E-04 
-2003980882E-04 
-1084615011E-04 
-1089526677E-04 
-20 10601846E-04 
-2040740346E-04 
-2075237370E-04 
-3011984297E-04 
-3058131486E-04 
-20 0407 1437E-04 

THETA 
3027890661E+Ol  
l o24394338E+Ol  
6046671443E+00 
4088383078E+00 
4050047363E+00 
4o42437812E+00 
4061746458E+00 
5051301935E+OO 
3043226621E+Ol  
2095210422E+Ol  
2036095995E+01 
1091816662E+01 
1065125523E+01  
1047756391E+01  
1032064206E+01  
1o02829513E+01 
3031217976E+Ol 
3048605624E+01  
3042240951E+Ol 
3018353527E+01 
2088456704E+01  
2060740063E+01 
2036738577E+01 
2028190891E+01 
3021258999E+Ol  
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26 
27 
2 8  
2 9  
30 
3 1  
3 2  
33 
34 
35  
36 
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
43 
44 
4 5  
46 
47 
4 8  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
55  
56  
57  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
6 5  
66 
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
76 
77 
7 8  
7 9  
8 0  

2054505819E-04  
2012207341E-04  
1089735497E-04  
1078014281E-04  
1072940078E-04  
1 o70685393E-04 
1 0 7 3 7 3 7 5  19E-04 
30  34070094E-04 
2071745632E-04  
2 052479038E-04  
2040512687E-04  
2030648910E-04  
2023066492E-04  
2 0 1 8 7 6 1 1 4 9 E - 0 4  
20 19926221E-04 
3 0 0 1 6 1 7 5 3 6 E - 0 4  
2 0 7 1 8 4 9 1 6 9 E - 0 4  
2 0 7 8 3 8 9 3 4 1 E - 0 4  
2077847989E-04  
2072556181E-04  
2 0 6 5 7 8 5 0 7 1 E - 0 4  
2059122401E-04  
2052494362E-04  
1071328343E-04  
2 051373718E-04  
2 084235765E-04  
2 0 9 6 2 1 9 5 6 8 E - 0 4  
2 097600377E-04  
2 0 9 4 6 8 8 3 7 4 E - 0 4  
2 0 9 1 1 7 7 7 8 8 E - 0 4  
2 85495596E-04 
8078683779E-05  
20 08402410E-04  
2 0 6 7 6 3 6 8 2 9 E - 0 4  
2 0 9 3 2 8 1 7 4 9 E - 0 4  
3 0 0 3 1 1 0 7 9 2 E - 0 4  
3 0 0 7 0 8 0 0 5 1 E - 0 4  
3 0  10127928E-04 
30  22383210E-04 
7 0 4 5 3 0 9 6 6 3 E - 0 5  
1069006002E-04  
2037381379E-04  
2 7 2  367  189 E-04 
2 0 9 0 3 4 5 3 0 6 E - 0 4  
3 0 3 3 8 7  15 1 E-04 
3 0  16174061E-04 
3 0  18676022E-04 
8 0  76214862E-05 
1043548420E-04  
20 04803130E-04  
2039612206E-04  
2064880252E-04  
2092292928E-04  
3023439409E-04  
3066824413E-04  

-1093071791E-04  
-2006846905E-04  
-2027811595E-04  
-2049714078E-04  
-2 0 71692444E-04  
-2 0 9 3 1 8  168 O E - 0 4  
-3003959761E-04  
-1079942262E-04  
-1088123966E-04  
-2o23143532E-04 
-2048428804E-04  
-2065320124E-04  
-2077900638E-04  
-2088795948E-04  
-3009776739E-04  
-1027741652E-04  
-1 0 91978681E-04 
-2040469758E-04  
-2065504346E-04  
-2076443043E-04  
-2080359808E-04  
-2081779763E-04  
-2078639005E-04  
-9050428013E-05  
-2001436164E-04  
-2052365620E-04  
-2072059735E-04  
-2075731472E-04  
-2072198981E-04  
-2066004224E-04  
-2059366978E-04  
-1007030038E-04  
-2005994298E-04  
-2050487898E-04  
-2062238370E-04  
-2058177291E-04  
-2048653895E-04  
-2039567961E-04  
-2034901048E-04  
-1070999762E-04  
-2010848492E-04  
-2035612637E-04  
-2034405227E-04  
-2021712682E-04  
-2008519634E-04  
-1097224576E-04  
-1088312520E-04  
-2045092838E-04  
-2019339832E-04  
-2011920724E-04  
-1089202068E-04  
-1068004810E-04  
-1057758319E-04  
-1057493580E-04  
-1056326654E-04  

3070126636E+01  
3096682225E+01  
30  94002591E+01 
30  74986825E+01  
3*50392812E+Ol  
30 259991  18E+01 
2091445469E+01  
30  03287625E+01 
3092461281E+Ol  
4033264259E+01  
40 38466137E+01 
40 28111334E+01 
4011663059E+01  
3093037899E+01  
30  78657383E+0 1 
2074109957E+Ol  
40 23749174E+O1 
4059757901E+01  
4 0 6 5 8 9 2 2 9 2 E + 0 1  
40 61468418E+O 1 
4053275295E+Ol  
4044739545E+01  
4 0 3 8 3 3 4 0 3 5 E + 0 1  
30 38478093E+O1 
4054030906E+01  
4078436443E+01  
4084112782E+01  
4084935041E+Ol  
40 84957740E+01 
4085162192E+01  
4085062998E+01  
5032904308E+01  
4097074108E+01  
4 0 9 7 6 6 9 6 5 2 E + 0 1  
5 0 0 0 6 8 0 0 7 6 E + 0 1  
5006551744E+01  
5015460696E+01  
5026983700E+01  
5 0 3 7 7 4 9 2 1 8 E + 0 1  
7 0  1058957OE+Ol 
5 0 5 9 8 5 2 6 9 5 E + 0 1  
50 2655  1129E+O 1 
5022986659E+01  
5 0  34498353E+Ol 
5054109846E+01  
5075832789E+Ol  
6 0 0 6 2 5 2 3 8 6 E + 0 1  
7099557324E+Ol  
6 0 3 8 1 6 1 8 8 8 E + 0 1  
5070191875E+Ol  
5059463934E+Ol  
50 81888234E+O 1 
60 1475230OE+O1 
60 45495088E+O 1 
6057846881E+Ol  
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8 1  
82 
83  
84 
85 
86 
87 
88 
89 
90 
9 1  
92 
93 
94 
95 
96 

1o04673090E-04 
1o35687168E-04 
1077996032E-04 
2002368955E-04 
2041464959E-04 
2o89351976E-04 
3036380519E-04 
30 77183372E-04 
9096701665E-05 
1014410874E~04 
1065093730E-04 
2001532927E-04 
2061289235E-04 
3022760117E-04 
3086624451E-04 
4052134229E-04 

-3 04313 101E-04 
-2035720316E-04 
-1083268917E-04 
-1026478704E-04 
-1007073881E-04 
-1011072514E-04 
-1017876154E-04 
-1037049961E-04 
-3032524875E-04 
-2057168741E-04 
-1042658487E-04 
-6076951539E-05 
-8004806601E-05 
-9078284787E-05 
-1016319984E-04 
-1027254328E-04 

TABLE FOR THE STATE OF STRESS AT E A C H  C E L L  

C E L L  N U M B E R  
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12 
13 
14 
15 
16 
17 
18 
19 
2 0  
2 1  
22  
23 
24 
2 5  
26 
27 
2 8  
29 
30 
31 
32 
33 
34 

M A X .  STRESS 
1044541367E+03 
5075268354E+02 
1067242569E+02 
5*31678858E+01 
2009261580E+01 
3047210202E+00 

-1049204317E+01 
-3064275815E+02 

5074032750E+03 
2083824642E+03 
1041717323E+03 
7071593797E+02 
5023853507E+02 
4030390184E+02 
3014641406E+02 
6005803968E+02 
7097843145E+03 
5007761396E+03 
3030337983E+03 
2029697462E+03 
1076999717E+03 
1051174320E+03 
1044423584E+03 
10 13884977E+03 
8092243416E+03 
6048080050E+03 
4095010777E+03 
4000193469E+03 
3039890301E+03 
3001425311E+03 
2072739195E+03 
2072141509E+03 
9023365106E+03 
7 009808049E+03 

M I N o  STRESS 
-3022021071E+03 
-4069404773E+03 
-6029069677E+03 
-7 7 112667 OE+03 
-9013000819E+03 
-1006444188E+04 
-1022838273E+04 
-1040974466E+04 
-3072988871€+03 
-4003609704E+03 
-4093451418E+03 
-6014955252E+03 
-7.4973 1865E+03 
-8088904077E+03 
-1002648322E+04 
-1013711747E+04 
-3072589703E+03 
-4001516615E+03 
-4069478635E+03 
-5062896299E+03 
-6069121123E+O3 
-7080359814E+03 
-80926258176+03 
d1004022896E+04 
-3044541288E+03 
-308479 1359E+03 
-4072037483E+03 
-5063376745E+03 
-6047175143E+03 
-7024649739E+03 
-7097723281E+03 
-8030236831E+03 
-2062817254E+03 
-3.51429485E+03 

137 

6061698807E+01 
70  24880072E+Ol 
6 309 11477E+O 1 
60 31325683E+01 
6078372997E+O1 
70  16124022E+Ol 
7044431425E+01 
7082420731E+01 

-8078967385E+01 
8004413195E+Ol 
7o34758505E+ol 
80 16827367E+01 
8036631425E+01 
8o42391331E+01 
8043515960E+01 
8036654513E+01 

T H E T A  
30 27890661E+01 
lo24394338E+O1 
6046671443E+00 
4088383078E+00 
4050047363E+00 
4042437812E+00 
4061746458E+00 
5051301935E+00 
3043226621E+01 
2095210422E+01 
20 36095995Ec01 
1 918 16662E+Ol 
1065125523E+01 
1047756391E+01 
lo32064206E+Ol 
10028295 13E+O1 
3031217976E+Ol 
3048605624E+01 
30 4224095 1 E + O l  
30 18353527E+01 
2088456704E+01 
2060740063E+01 
2036738577E+01 
2o28190891E+Ol 
3.21258999E+O 1 
3o70126636E+01 
3096682225E+Ol 
3094002591E+Ol 
3074986825E+01 
30 503928 12E+01 
30 25999118E+01 
2091445469E+01 
3003287625E+Ol 
3092461281E+01 
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35 
36  
37  
38 
3 9  
4 0  
41 
4 2  
4 3  
44 
45  
46 
47 
4 8  
4 9  
50 
5 1  
5 2  
5 3  
5 4  
5 5  
56  
57  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
64  
6 5  
66 
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
74  
7 5  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
83  
8 4  
85 
86  
87 
8 8  

60 11657072E+03 
5 04720015 lE+O3 
4 0  97976502E+03 
4 6 05 37 256E+0 3 
40  35568236E+03 
4018658900E+03  
8068005628E+03  
7 0 0 6 3 3 7 0 2 8 E + 0 3  
6079939825E+03  
6053395664E+03  
6025131655E+03  
5 098935588E+03 
5 75566392E+03 
5 0 5 6 8 2  1958E+03 
4070820339E+03  
60 29481986E+03 
6m87448611E+03 
7007477959E+03  
7 0 0 8 3 9 8 6 9 0 E + 0 3  
7 0 0 2 2 9 2 3 5 1 E + 0 3  
6096845673E+03  
6084677480E+03  
1 0 8 3 8 2 2 0 8 7 6 + 0 3  
4 0 8 3 3 1 0 2 8 6 E + 0 3  
60 34583932E+03 
7 0 0 7 5 0 6 2 7 8 E + 0 3  
7 0 4 3 9 2 6 1 7 1 E + 0 3  
7 066430382E+03 
7 0  85464416E+03 
8m30482074E+03 
7 658  58 38 8E+02 
3048631169E303  
5 049552486E+03 
6066084465E+03  
7 0  37906049E+03 
7 093949212E+03 
80 47274798E+03 
8064337141E+03  
4064625327E+02  
2056307047E+03  
4065583228E+03  
6002807427E+03  
7 0 0 7 0 7 2 9 9 8 E + 0 3  
8007578348E+03  
9 0  10520886E+03 
1 0 0 5 4 7 0 2 4 7 E + 0 4  
4 0 4 1 0 7 1 1 9 9 E + 0 2  
2m14190351E+03 
40  05545133E+03 
5042061574E+03  
6 9014108  1E+03 
8044055676E+03  
9092363976E+03  
1 0  10791775E+04 

89 -2087789285E+00 

-4m85933475E+03 
-5081126365E+03 
-6046567422E+03 
-6095540737E+03 
-7035717373E+03 
-8003732547E+03 
-1022823268E+03 
-3064034935E+03 
-5017427327E+03 
-6000494340E+03 
-6041789632E+03 
-6061398749E+03 
-6072669372E+03 
-6068870429E+03 
-1043882302E+03 
-4015463897E+03  
-5050862276E+03  
-6003935816E+03 
-60 14674809E+03 
-6005909236E+03 
-5088958971E+03 
-5072697691E+03 
-2065943488E+03 
-4072989809E+03 
-5*61088515E+03 
-5074463227E+03 
-5051354021E+03 
-50 16032571E+03 
-4083064558E+03  
-4055558522E+03 
-4090023534E+03 
-5027956125E+03 
-5041972164E+03 
-5003390340E+03 
-4043766231E+03 
-3087374138E+03 
-3037491287E+03  
-3005636418E+03 
-7021339753E+03 
-5081127381E+03 
-4096087205E+03 
-3086763975E+03 
-2091892529E+03  
-2m31001454E+03 
-1099324474E+03  
-1052569220E+03 
-8099707166E+03 
-6 042903844E+03 
-4028143210E+03 
-2016817639E+03 
-1014179318E+03  
-8000008396E+02 
-Sm59252689E+02 
-7087745591E+02 
-9097660963E+03  

40  33264259E+01 
4m38466137E+01 
40 28 111334E+01 
40  11663059E+Ol  
3093037899E+01  
3m78657383€+01 
2074109957E+Ol  
4023749174E+O1 
4o59757901E+Ol  
4065892292E+Ol  
4061468418E+01  
4 0 5 3 2 7 5 2 9 5 E + 0 1  
4044739545E+Ol  
4o38334035E+01 
3038478093E+01 
4054030906E+01  
4.78436443E+O 1 
4 0  84112782E+01 
4.84935041E+01 
4o8495774OE+O1 
4 0 8 5 1 6 2 1 9 2 E + 0 1  
40 85062998E+O1 
5o32904308E+01 
4o97074108E+Ol  
4097669652E+01  
5000680076E+01  
5 0 0 6 5 5 1 7 4 4 E + 0 1  
5 0 1 5 4 6 0 6 9 6 E + 0 1  
5026983700E+01  
5 0 3 7 7 4 9 2 1 8 E + 0 1  
7 0  10589570E+01 
5059852695E+Ol  
5 0 2 6 5 5 1 1 2 9 E + 0 1  
5 0 2 2 9 8 6 6 5 9 E + 0 1  
5034498353E+Ol  
5 0  54109846E+01 
5 0 7 5 8 3 2 7 8 9 E + O l  
6 0 0 6 2 5 2 3 8 6 E + 0 1  
7 0 9 9 5 5 7 3 2 4 E + O l  
6 0 3 8 1 6 1 8 8 8 E + 0 1  
5070191875E+01  
5059463934E+Ol  
5 0 8 1 8 8 8 2 3 4 E + 0 1  
60 14752300E+01 
6m45495088E+01 
6 0 5 7 8 4 6 8 8 1 E + 0 1  
80 61698807E+O 1 
7 0 2 4 8 8 0 0 7 2 E + 0 1  
6 0 3 0 9 1 1 4 7 7 E + O l  
60 31325683E+01 
6078372997E+01  
7 0  16124022E+01 
7 0 4 4 4 3 1 4 2 5 E + O l  
7 0 8 2 4 2 0 7 3 1 E + 0 1  

-8m78967385E+01 
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9 b  1022835993E+03  -7034655427E+03 
91 40  03174232E+03 -3007023191E+03 
9 2  5097443014E+03 -2038525576E+02 
9 3  7081796824E+03 -6090293300E+01  
9 4  9 0 6 7 2 9 0 9 0 2 € + 0 3  -3029816540E+01  
95 10 15954436E+04 -1009664466E+01 
9 6  1036469647E+04  2076459572E+02  

T A B L E  FOR STRAINS I N  T H E  X-Y D I R E C T I O N S  FOR E A C H  CELL 

CELL N U M B E R  
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
14 
15 
1 6  
17  
18 
19  
2 0  
2 1  
22  
23 
2 4  
2 5  
26 
27 
26 
29  
30 
3 1  
32 
33 
34 
35 
36 
37 
38 
39 
40  
41 
42 
4 3  

S T R A I N X  
2 0  10892863E-05 
5055211645E-05  
6 0 4 9 3 2 0 0 6 8 E - 0 5  
7064462443E-05  
8095560720E-05  
1 0 0 3 8 1 4 0 4 5 E - 0 4  
1018895447E-04  
1 0 2 3 3 3 9 2 3 8 E - 0 4  
9081723156E-05  
6026431670E-05  
5024351549E-05  
5048379717E-05  
6 43557078E-05 
7069697808E-05  
8 092083699E-05 
1 17366877E-04 
1051772905E-04  
8 06769690E-05 
4074250123E-05 
3072935228E-05 
4005700303E-05 
5004441773E-05 
6 049506010E-05 
6 o67638787E-05 
1080309304E-04  
9o23064704E-05 
4 0  14514420E-05 
2015110931E-05 
1095117250E-05 
2 063739344E-05 
3060375097E-05 
6 043  57 4 7 9  E- 0 5 
2003004347E-04  
8076829108E-05  
2085524916E-05  
5088186504E-06  
1059343199E-06  
6000297335E-06  
1 51108825E-05 
2003517920E-05 
2 0  10618857E-04 
60 11564096E-05 
1001249407E-05  

S T R A I N Y  
-6025012171E-05 
-1051626017E-04  
-2007812605E-04  
-2055135217E-04  
-3002101319E-04  
- 3 . 5 2 1 0 2 ~ 0 2 ~ - 0 4  
- 4 0 0 5 8 6 6 2 2 8 ~ - 0 4  
-4060779428E-04  
-5012620770E-05 
-9005930149E-05 
-1034506444E-04  
-1080323675E-04  
-2027069894E-04  
-2074338294E-04  
-3021379489E-04  
-3068558860E-04  
-5025471020E-05  
-5058865200E-05 
-7098911645E-05  
-1015039918E-04  
-1055398358E-04  
-1097254126E-04  
-2039531122E-04  
-2082910809E-04  
-5025121403E-05 
-30  08724425E-05 
-3060910068E-05 
-5095871909E-05 
-9012115214E-05  
-1025126301E-04  
-1058533796E-04  
-1090657990E-04  
-4088765143E-05  
-4006124576E-06  

7 0 8 3 0 1 4 4 5 7 E - 0 7  
-1037979818E-05  
-3062646466E-05  
-6008371190E-05  
-8051456811E-05  
-1010202310E-04  
-3067429729E-05  

1087140786E-05  
2077946422E-05  

8004413195E*O l  
7034758505E+Ol  
80 16827367E+01 
8036631425E+01  
80 42391331E+01 
8043515960E+01  
8036654513E+01  

S T R A N X Y  
1 0 8 h 0 8 7 4 5 2 E - 0 4  
9 0 6 0 6 1 6 7 1 5 E - 0 5  
6026343558E-05 
5070813497E-05  
6o20390745E-05 
7 0 0 9 7 6 9 7 2 9 E - 0 5  
8o53211798E-05 
1 0  13816680E-04  
3 0 8 2 2 0 1 3 2 5 E - 0 4  
2055452661E-04  
2002014305E-04 
l o 8 6 1 4 1 9 1 1 E - 0 4  
l o 8 9 4 3 5 5 9 2 E - 0 4  
1o99175811E-04  
2003932293E-04 
l o 8 2 3 1 7 5 1 5 E - 0 4  
40  64211766E-04  
3 0 6 9 5 9 7 8 1 6 E - 0 4  
3o22355827E-04 
300?826960E=04  
3 0 0 9 8 8 7 6 3 6 E - 0 4  
3 0  18733140E-04  
3o30515539E-04 
3057552328E-04  
4082727563E-04  
40 30293706E-04 
4o11817472E-04 
4009595707E-04 
4013148777E-04 
40  18026025E-04 
4021087483E-04  
4006382365E-04  
4048067778E-04  
4 0  50625185E-04 
4 0 7 4 8 1 1 2 1 0 E - 0 4  
4o88545274E-04 
4 0  94522040E-04 
4096488134E-04 
4o97556859E-04 
5 0  133623OlE-04 
3050943639E-04  
40  6188  1937E-04 
5.18558142E-04 



t 

. 140 

4 4  
45 
46  
47  
4 8  
4 9  
5 0  
5 1  
5 2  
5 3  
5 4  
5 5  
56  
57 
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
64 
65 
6 6  
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
86 
87 
8 8  
89  
9 0  
9 1  
9 2  
93  
9 4  
95 
96 

-8089156718E-06  
-1029293553E-05  
-1004093210E-05  
-6036281493E-06  
-2026093016E-06  

8086902794E-05 
2 0  17832476E-05 

-1006532543E-05  
-2016744174E-05  
-2039368178E-05 
-2032568968E-05  
-2015214659E-05  
-2001961748E-05  
-3073897396E-05  
-3026896934E-05 
-3043344618E-05  
-3033600628E-05 
-3025740739E-05  
-3037287038E-05  
-3076924927E-05  
-4002793730E-05 
-1045130166E-04  
-9 19786867E-05 
-6015615272E-05 
-4048784986E-05 
-4001104694E-05 
-4035488118E-05 
-4 0 9 68  6 9  2 2 9 E-0 5 
-6063261030E-05 
-2034972167E-04 
-1048684180E-04 
-8 084346987E-05 
-5047411278E-05 
-4077245990E-05 
-5051272124E-05 
-6 086802864E-05 
-6083134003E-05 
-3002488193E-04 
-2002091571E-04 
-10092739595-04  
-5093152981E-05 
-5074738483E-05 
-7012284004E-05 
-8052041035E-05 
-1015696346E-04 
- 3 0  31942737E-04 
-2046922381E-04 
-1 17763048E-04 
-6 0 2 06 15  8 9 2 E-05 
-7063170992E-05 
-90 35908402E-05 
- 1 0  11447854E-04 
-1020201135E-04  

2o12352094E-05 
9o04249401E-06 

-4016541673E-06  
-1062945471E-05  
-2038837129E-05  
-1024047375E-05 

2081543066E-05  
4o25233992E-05 
4058342508E-05  
4058057233E-05 
4 0  57462904E-05 
4 0  66950298E-05 
4o63247922E-05 
1082280794E-05  
3o50978046E-05 
5o14833925E-05 
6.44034413E-05 
7o75075754E-05 
9021548597E-05  
1 0 0 8 2 5 2 4 6 0 E - 0 4  
1 0 2 7 7 6 1 5 3 5 E - 0 4  
4086613710E-05  
5o01361968E-05 
60 33302691E-05 
8 28404"-05 
l o 0 8 7 4 3 0 9 3 E - 0 4  
1 0 3 8 4 1 6 3 2 9 E - 0 4  
1 0 6 8 6 3 6 4 0 9 E - 0 4  
1 0 9 6 6 8 9 6 0 5 E - 0 4  
7075008153E-05  
7028927686E-05  
8013171042E-05 
1 0 0 5 1 5 1 2 6 7 E - 0 4  
1 0 4 4 6 0 0 0 4 2 E - 0 4  
1 0 8 9 6 6 1 8 2 1 E - 0 4  
2 3 4 6 2 6 1  16E-04 
2078811160E-04  
l o 0 2 8 4 8 1 8 2 E - 0 4  
1 0  02058422E-04 
l o 0 4 0 0 1 0 7 4 E - 0 4  
l o 3 5 2 0 5 5 5 0 E - 0 4  
1 0 9 1 8 6 4 9 2 6 E - 0 4  
20 49507862E-04 
3003706468E-04  
3o55829757E-04 
9090880285E-05  
1 0 0 4 1 6 4 5 1 3 E - 0 4  
1 40198291  E-04 
1 0 9 5 8 9 9 3 6 2 E - 0 4  
2 0 5 7 1 2 5 6 7 4 E - 0 4  
30 18522479E-04 
3 0 8 1 7 5 2 3 2 1 E - 0 4  
4 0 4 5 0 8 1 0 3 5 E - 0 4  

5042516486E-04  
5048559373E-04  
5 46 109186E-04 
5040810976E-04  
5030693046E-04  
2046441442E-04  
4 0 5 2 7 6 5 0 6 0 E - 0 4  
5 0  33960007E-04 
5 0 6 4 2 5 5 2 1 3 E - 0 4  
5 0 6 9 0 7 4 1 4 9 E - 0 4  
5062672048E-04  
5o52990329E-04 
5o40786636E-04  
1o8679414OE-04 
4 0 0 8 8 1 4 7 3 4 E - 0 4  
5.10968227E-04 
5 0 4 6 8 4 9 9 7 9 E - 0 4  
5 0 5 0 3 8 7 4 4 8 E - 0 4  
5 0 4 1 2 8 8 7 8 4 E - 0 4  
50 29967584E-04 
5o31345460E-04 
1050765309E-04  
3 0 5 2 2 6 8 0 7 5 E - 0 4  
4 0 5 6 2 0 7 6 0 4 E - 0 4  
4 0 9 0 4 1 4 2 6 2 E - 0 4  
4 0  89944895E-04 
4 0 7 8 4 7 3 8 6 9 E - 0 4  
4 0 6 4 6 6 4 4 8 5 E - 0 4  
4 0 3 3 4 2 8 3 3 2 E - 0 4  
10 14277980E-04 
2 0 8 7 3 8 7 4 3 8 E - 0 4  
3080582575E-04  
309788956215-04 
3087815303E-04  
3077656530E-04  
3 7 3 23 15 19E-04 
3091396958E-04  
5o45172219E-05 
20 13157925E-04 
2091592393E-04  
2 0 6 5 1 4 6 0 4 0 E - 0 4  
2 4 3 5 3 5 4  14E-04 
20 39724889E-04 
2034732845E-04  
2o05180543E-04 

- 3 e l 7 0 2 2 5 8 1 E - 0 5  
1 0 2 1 6 9 3 8 8 9 E - 0 4  
1 0 6 7 8 3 1 3 8 6 E - 0 4  
7o70707928E-05 
7.49838518E-05 
8o40082110E-05 
9o85225469E-05 
1 ~ 2 7 0 7 1 5 0 8 E - 0 4  
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TABLE FOR STRESSES I N  THE X-Y D I R E C T I O N S  FOR EACH CELL 

CELL NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12 
13 
14 
1 5  
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1  
42 
43 
44 
45 
46 
47 
48 
49 
50  
5 1  
52 

STRESSX 
7 7 10729 13E+O 1 
3030770096E+02 
8053261091E+01 

-3010947430E+00 
-3054172698E+01 
4-5 o98943526E+01 
-9 443 145 39E+O 1 
-4o910304636+02 

2.72946239€+03 
1 0  16918448E+03 
3098347969E+02 
2044242560E+01 

-1024129469E+02 
-1075770576E+02 
-2037543189E+02 

2024150088E+02 
4048380576E+03 
20 10695647E+03 
7 0  73329549E+02 
9016993659E+01 

-1099433313E+02 
-2087870124E+02 
-2027760515E+02 
-5097011999€+02 

5.424911926+03 
2 073773860E+03 
1000958703E+03 
1 0  198330516+02 

-2058848288E+02 
-3068042500E+02 
-30798668946+02 

1006758824E+02 
6*20905689€+03 
2r85047925€+03 
9049035032E+02 
5 74440844E+0 1 

-3006130613E+02 
-4003785569€+02 
-3043939180E+02 
-40 1.8974751E+02 
6 058008676E+03 
20 20122967E+03 
6008681317E+02 

-8 0 3 1100353E+O 1 
-3036811225E+02 
-30843608606+02 
-3070917988E+02 
-3010748702€+02 

2080117115E+03 
9096578226E+02 
6093549031€+01 

-2.61235459€+02 

STRESSY 
-1085190433E+03 
-4044954947E+03 
-6020878031E+03 
-7065498934E+03 
-9007366476E+03 
-1005810524E+04 
-1022043163E+04 
-1039706920E+04 
-70 19023595E+02 
-2*36703510€+03 
d3091568892E+0? 
-5040238298E+03 
-6084933567E+03 
-8028288001E+03 
-9071264762E+03 
-1009895208E+04 
-2031271335E+02 
-1004450866E+03 
-2016473607E+03 
-3042368774E+03 
-4072178074E+03 
-6000398481E+03 
-7025426182E+03 
-8066642788E+03 

5021093656E+Ol 
-1004851695E+02 
-7079854095€+02 
-1075166581E+03 
-2081400013E+03 
-3086420177E+03 
-4086997396E+03 
-5068771204€+03 

3 09642 1636E+02 
7033306399E+02 
3008200941E+O2 

-3096706232E+02 
-1017977858E+03 
-1094624924E+03 
-20657552196+03 
-3043176172E+O3 

8071736839€+02 
10221791266+03 
1*01644366€+03 
60 12123272E+O2 
1070231455E+02 

-2*40270758E+02 
-6000111812E+02 
-8009736002E+02 

4068209217E+02 
1014360267E+03 
1029650845E+03 
1029665689E+O3 

STRESXY 
20 12408598€+03 
1010840390E+03 
7022704105E+02 
6058630958€+02 
7o15035474E+O2 
80 18965071E+02 
90  8447515 1E+02 
1.31326939€+03 
4041001529E+03 
2094753071E+03 
20 33093429E+03 
20 14779128E+03 
20 18579529E+03 
2029818243E+03 
2035306492E+03 
20 10366363E+03 
5035628961E+03 
4026459018E+03 
3071949031E+03 
3.55184953E+03 
3057562657E+03 
3067769007E+03 
3 8 1 3 640 8 3E +O.3 
4 0  12560378E+03 
5056993342E+03 
4096492737E+03 
4075174006€+03 
4 7 2 6 104 3 I E +03 
4076710127€+03 
4 0.8 2 3 377 2 2E+.O,3 
4 8 5 8 70 172E +03 
4 6 8 90  2 7 2 9E +$3 
5 0  I70Q1283E+q3 
5 0  19952136E+O3 

5053706085€+03 
5070602354E+03 
5*72870924E+03 
50741040686+03 
5092341117E+03 
4.04934968€+03 
5032940697E+O3 
5098336317E+03 
6*25980561E+03 
60 32953123E+03 
6*30125984E+03 
6024012665E+03 
6*12338131E+03 
2084355510E+03 
5.22421223€+03 
6016107701E+03 
60 51063707E+03 

5047854084E4-03 
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5 3  
54 
55 
56 
57  
5 8  
5 9  
60 
6 1  
6 2  
6 3  
b 4  
65  
66 
6 7  
68 
69 
70  
7 1  
72 
73 
74 
7 5  
76 
7 7  
78  
79 
80 
8 1  
8 2  
83 
8 4  
8 5  
86 
87  
88 
89 
9 0  
9 1  
92 
9 3  
9 4  
95 
96  

-3036102226E+02 
-3014275047E+02 
-2 0 4767990 1 E +O 2 
-2007650675E+02 
-1005235107E+03 
-7030561056E+02 
-6 0 22728926E+02 
-4062825181E+02 
.-3 0 0 73 12 13  1E +02 
-2000513601E+02 
-1071980930E+02 
-6043157981E+01 
-4030324467E+03 
-2053641190E+03 
-1040315758E+03 
-6060209680E+02 
-2046842024E+02 
-6 0 6 72 2 4 1 15E +O 1 

2 098021864E+01 
-2041293018E+02 
-6097984359E+03 
-4018075876E+03 
-2011119453E+03 
-7064694983E+02 
-1043228126E+02 

5083956241E+01 
5062928022E+01 
5005382886E+02 

-8 095495840E+03 
-5065299046E+03 
-20573856156+03 
-6018251646E+02 

2082295263E+00 
10194711516+02 
1094763858E+02 

-20949698596+02 
-9096317568E+03 
-7011009980E+03 
-2 Po 495 72 1 7 9E + 0 3 
-1008520235€+02 

2070528433E+Ol  
6048100057E+O 1 
loO1467325€+02 
40  39225574E+O2 

1o27334103E+03 
1027810620E+03 
1 32654693E+03 
1o32744856E+03 
2o31137060€+02 
8.33765824€+02 
1035768310E+03 
1o79325569E+03 
2o23303362E+03 
2 70449 17 1E+03 
3019597951E+03 
3081355132E+03 
1068867727E+02 
7o43162335E+02 
1047896080E+03 
2028715093E+03 
3018824020E+03 
4 0  13247315E+03 
5006803292E+03 
5o82830025E+03 
2 3 107 1384E+02 
9.32555428€+02 
1080615477E+O3 
20925129506+03 
4029503282€+03 
5o70737332E+O3 
7005567132E+03 
8051594966E+03 
3096957938E+02 
1036585554E+03 
2034787538E+03 
3o87069099E+03 
5075679467E+03 
?o52107721E+03 
9*16962321E+03 
1.05864018E+04 

-1063118478E+Ol  
9o91905463E+O2 
3045723221E+O3 
5084442480E+03 
7072188607E+03 
9057511736€+03  
1 0  14830098E+04 
1034841987E+04 

6*56624019€+03 
6o49236978€+03 
60 38065765€+03 
6023984580E+03 
20 15531700€+03 
4071709308€+03  
5089578723E+03 
6030980745E+03 
6035062440E+03 
6024563981€+03  
6011501059E+03 
60 13090916E+03 
lo73959972E+O3 
4006463163E+03 
5026393389€+03 
5*65862610E+03 
5065321033E+O3 
5052085234E+O3 
5036151329E+03 
5000109614E+03 
10318592086+03 
3031600890€+03  
4*3Y133740E+03 
4o59103341E+O3 
4047479196E+03 
40 35757534E+03 
4030651752E+03 
4051611875E+03 

2*45951452E+03 
3 0  36452761E+03 
3 0  05937738E+03 
2.81002401E+03 
2*76605640E+03 
2070845591E+03 
2.36746780E+03 

-3065795286E+02 
1.40416025E+03 
1093651599E+03 
8089278378E+02 
8o65198291E+02 
9.69325512E+O2 
1 0  13679862E+03 
1 4662 097 1E +03 

6 . 2 9 0 4 4 a 6 8 ~ + 0 2 ,  
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